Journal of Oceanography

, Volume 65, Issue 5, pp 677–687 | Cite as

Features of coastal upwelling regions that determine net air-sea CO2 flux

  • Debby IansonEmail author
  • Richard A. Feely
  • Christopher L. Sabine
  • Lauren W. Juranek
Original Articles


The influence of the coastal ocean on global net annual air-sea CO2 fluxes remains uncertain. However, it is well known that air-sea pCO2 disequilibria can be large (ocean pCO2 ranging from ∼400 µatm above atmospheric saturation to ∼250 µatm below) in eastern boundary currents, and it has been hypothesized that these regions may be an appreciable net carbon sink. In addition it has been shown that the high productivity in these regions (responsible for the exceptionally low surface pCO2) can cause nutrients and inorganic carbon to become more concentrated in the lower layer of the water column over the shelf relative to adjacent open ocean waters of the same density. This paper explores the potential role of the winter season in determining the net annual CO2 flux in temperate zone eastern boundary currents, using the results from a box model. The model is parameterized and forced to represent the northernmost part of the upwelling region on the North American Pacific coast. Model results are compared to the few summer data that exist in that region. The model is also used to determine the effect that upwelling and downwelling strength have on the net annual CO2 flux. Results show that downwelling may play an important role in limiting the amount of CO2 outgassing that occurs during winter. Finally data from three distinct regions on the Pacific coast are compared to highlight the importance of upwelling and downwelling strength in determining carbon fluxes in eastern boundary currents and to suggest that other features, such as shelf width, are likely to be important.


Carbon fluxes coastal upwelling coastal downwelling biogeochemical models climate change continental shelf wind forcing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, J. S. and P. A. Newberger (1996): Downwelling circulation on the Oregon continental shelf. Part I: Response to idealized forcing. J. Phys. Oceanogr., 26, 2011–2035.CrossRefGoogle Scholar
  2. Allen, S. E., C. Vindeirinho, R. E. Thomson, M. G. G. Foreman and D. L. Mackas (2001): Physical and biological processes over a submarine canyon during an upwelling event. Can. J. Fish. Aquat. Sci., 58, 671–684.CrossRefGoogle Scholar
  3. Auad, G., A. Miller and E. Di Lorenzo (2006): Long-term forecast of oceanic conditions off California and their biological implications. J. Geophys. Res., 111, C09008, doi:10.1029/2005JC003219.CrossRefGoogle Scholar
  4. Bienfang, P. K., P. J. Harrison and L. M. Quarmby (1982): Sinking rate response to depletion of nitrate, phosphate and silicate in four marine diatoms. Mar. Biol., 67, 295–302.CrossRefGoogle Scholar
  5. Bienfang, P. K., J. Szyper and E. Laws (1983): Sinking rate and pigment responses to light-limitation of a marine diatom: implications of dynamics of chlorophyll maximum layers. Oceanol. Acta, 6, 55–62.Google Scholar
  6. Borges, A. V., B. Delielle and M. Frankignoulle (2005): Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts. Geophys. Res. Lett., 32, L14601, doi:10.1029/2005GL023053.CrossRefGoogle Scholar
  7. Cai, W.-J., Z. Wang and Y. Wang (2003): The role of marsh-dominated heterotrophic continental margins in transport of CO2 between the atmosphere, the land-sea interface and the ocean. Geophys. Res. Lett., 30, doi:10.1029/2003GL017633.Google Scholar
  8. Cai, W.-J., M. Dai and Y. Wang (2006): Air-sea exchange of carbon dioxide in ocean margins: a province-based synthesis. Geophys. Res. Lett., 33, L12603, doi:10.1029/2006GL026219.CrossRefGoogle Scholar
  9. Chase, Z., P. Strutton and B. Hales (2007): Iron links river runoff and shelf width to phytoplankton biomass along the U.S. west coast. Geophys. Res. Lett., 34, L04607, doi:10.1029/2006GL028069.CrossRefGoogle Scholar
  10. Crawford, W. R. and R. K. Dewey (1989): Turbulence and mixing: Sources of nutrients on the Vancouver Island continental shelf. Atmos.-Ocean, 27, 428–442.CrossRefGoogle Scholar
  11. Cullen, J. T., M. Chong and D. Ianson (2009): The British Columbian continental shelf as a source of dissolved iron to the subarctic northeast Pacific Ocean. Global Biogeochem. Cycles, doi:10.1029/2008GB003326 (in press).Google Scholar
  12. Dorman, C. E. and C. D. Winant (1995): Buoy observations of the atmosphere along the west coast of the United States, 1981–1990. J. Geophys. Res., 100, 16029–16044.CrossRefGoogle Scholar
  13. Feely, R. A., C. L. Sabine, J. M. Hernandez-Ayon, D. Ianson and B. Hales (2008): Evidence for upwelling of corrosive ‘acidified’ water onto the continental shelf. Science, 320 1490–1492.CrossRefGoogle Scholar
  14. Friederich, G. E., P. M. Walz, M. G. Burczynski and F. P. Chavez (2002): Inorganic carbon in the central California upwelling system during the 1997–1999 El Niño - La Niña event. Prog. Oceanogr., 54, 185–203.CrossRefGoogle Scholar
  15. Griffin, D. A. and P. H. LeBlond (1990): Estuary/ocean exchange controlled by spring-neap tidal mixing. Estuar. Coast. Shelf Sci., 30, 275–297.CrossRefGoogle Scholar
  16. Hales, B., T. Takahashi and L. Bandstra (2005): Atmospheric CO2 uptake by a coastal upwelling system. Global Biogeochem. Cycles, 19, doi:10.1029/2004GB002295.CrossRefGoogle Scholar
  17. Hamme, R. C. and S. R. Emerson (2006): Constraining bubble dynamics and mixing with dissolved gases: Implications for productivity measurements by oxygen mass balance. J. Mar. Res., 64, 73–95.CrossRefGoogle Scholar
  18. Harrison, W. G., T. Platt and M. R. Lewis (1987): f-ratio and its relationship to ambient nitrate concentration in coastal waters. J. Plankton Res., 9, 235–248.CrossRefGoogle Scholar
  19. Hickey, B. M. (1998): Coastal oceanography of western North America from the tip of Baja California to Vancouver Island. p. 345–393. In The Sea, Vol. 11, ed. by A. R. Robinson and K. H. Brink, John Wiley & Sons, Inc.Google Scholar
  20. Hickey, B. M. and N. S. Banas (2008): Why is the northern end of the California current system so productive? Oceanography, 21(4), 90–107.CrossRefGoogle Scholar
  21. Hickey, B., R. E. Thomson, H. Yih and P. H. LeBlond (1991): Velocity and temperature fluctuations in a buoyancy-driven current off Vancouver Island. J. Geophys. Res., 96, 10507–10538.CrossRefGoogle Scholar
  22. Hsieh, W. W., D. W. Ware and R. E. Thomson (1995): Windinduced upwelling along the west coast of North America, 1899–1988. Can. J. Fish. Aquat. Sci., 52, 325–334.CrossRefGoogle Scholar
  23. Hutchings, L., G. C. Pitcher, T. A. Probyn and G. W. Bailey (1995): The chemical and biological consequences of coastal upwelling. p. 65–81. In Upwelling in the Ocean: Modern Processes and Ancient Records, ed. by C. P. Summerhayes, K.-C. Emeis, M. V. Angel, R. L. Smith and B. Zeitzschel, Wiley and Sons Ltd.Google Scholar
  24. Ianson, D. and S. E. Allen (2002): A two-dimensional nitrogen and carbon flux model in a coastal upwelling region. Global Biogeochem. Cycles, 16, 10.1029/2001GB001451.Google Scholar
  25. Ianson, D., S. Harris, S. E. Allen, K. Orians, D. Varela and C. S. Wong (2003): The inorganic carbon system in the coastal upwelling region west of Vancouver Island, Canada. Deep-Sea Res. I, 50, 1023–1042.CrossRefGoogle Scholar
  26. Kaiser, J. M., M. K. Reuer, B. Barnett and M. L. Bender (2005): Marine productivity estimates from continuous O2/Ar ratio measurement by membrane inlet mass spectrometry. Geophys. Res. Lett., 32, L19605, doi:10.1029/2005GL023459.Google Scholar
  27. Klymak, J. M. and M. C. Gregg (2001): The three-dimensional nature of flow near a sill. J. Geophys. Res., 106, 22295–22311.CrossRefGoogle Scholar
  28. Lentz, S. J. (1992): The surface boundary layer in coastal upwelling regions. J. Phys. Oceanogr., 22, 1517–1539.CrossRefGoogle Scholar
  29. Lentz, S. J. and D. C. Chapman (2004): The importance of nonlinear cross-shelf momentum flux during wind-driven coastal upwelling. J. Phys. Oceanogr., 34, 2444–2457.CrossRefGoogle Scholar
  30. Masson, D. (2006): Seasonal water mass analysis for the Straits of Juan de Fuca and Georgia. Atmos.-Ocean, 44, 1–15.CrossRefGoogle Scholar
  31. Merryfield, W. J., B. Pal and M. G. G. Foreman (2009): Projected future changes in surface marine winds off the west coast of Canada. J. Geophys. Res., 114, C06008, doi:10.129/2008JC005123.CrossRefGoogle Scholar
  32. Nemcek, N., D. Ianson and P. D. Tortell (2008): A high-resolution survey of DMS, CO2, and O2/Ar distributions in productive coastal waters. Global Biogeochem. Cycles, 22, doi:10.1029/2006GB002879.CrossRefGoogle Scholar
  33. Pawlowicz, R. (2001): A tracer method for determining transport in two-layer systems, applied to the Strait of Georgia/Haro Strait/Juan de Fuca Strait estuarine system. Estuar. Coast. Shelf Sci., 52, 491–503.CrossRefGoogle Scholar
  34. Pawlowicz, R., O. Riche and M. Halverson (2007): The circulation and residence time of the Strait of Georgia using a simple mixing-box approach. Atmos.-Ocean, 45, 173–193.CrossRefGoogle Scholar
  35. Peña, M. A., K. L. Denman, J. R. Forbes, S. E. Calvert and R. E. Thomson (1996): Sinking particle fluxes from the euphotic zone over the continental slope of an eastern boundary current region. J. Mar. Res., 54, 1097–1122.CrossRefGoogle Scholar
  36. Perry, M. J., J. P. Bolger and D. C. English (1989): Primary production in Washington coastal waters. p. 117–138. In Coastal Oceanography of Washington and Oregon, ed. by M. R. Landry and B. M. Hickey, Elsevier, Amsterdam.CrossRefGoogle Scholar
  37. Simpson, J. J. and A. Zirino (1980): Biological control of pH in the Peruvian coastal upwelling area. Deep-Sea Res., 27, 733–744.CrossRefGoogle Scholar
  38. Smith, R. L. (1994): The physical processes of coastal ocean upwelling systems. p. 39–64. In Upwelling in the Ocean: Modern Processes and Ancient Records, ed. by C. P. Summerhayes, K.-C. Emeis, M. V. Angel, R. L. Smith and B. Zeitzschel, Wiley and Sons Ltd.Google Scholar
  39. Sverdrup, H. U. (1942): The Oceans: Their Physics, Chemistry and General Biology. Prentice Hall, Englewood Cliffs, N.J., 1087 pp.Google Scholar
  40. Thomas, H., Y. Bozec, K. Elkalay and H. J. W. deBaar (2004): Enhanced open ocean storage of CO2 from shelf sea pumping. Science, 306, 5701, doi:10.1126/science.1103193.Google Scholar
  41. Thomson, R. E. and I. V. Fine (2003): Estimating mixed-layer depth from oceanic profile data. J. Atmos. Oceanic Technol., 20, 319–329.CrossRefGoogle Scholar
  42. Thomson, R. E. and D. Ware (1996): A current velocity index of ocean variability. J. Geophys. Res., 101, 14297–14310.CrossRefGoogle Scholar
  43. Tsunogai, S., S. Watanabe and T. Sato (1999): Is there a ‘continental shelf pump’ for the absorption of atmospheric CO2? Tellus, 51B, 701–712.CrossRefGoogle Scholar
  44. Wang, M., J. R. Overland and N. A. Bond (2009): Climate projections for selected large marine ecosystems. J. Mar. Sys., 350, doi:10.1016/j.marsys.2008.11.028.Google Scholar
  45. Ware, D. M. and R. E. Thomson (2005): Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific. Science, 308, 1280–1284.CrossRefGoogle Scholar
  46. Waterhouse, A. F., S. E. Allen and A. W. Bowie (2009): Upwelling flow dynamics in long canyons at low Rossby number. J. Geophys. Res., 114, C05004, doi:10.1029/2008JC004956.CrossRefGoogle Scholar
  47. Wetz, M. S., B. Hales, P. A. Wheeler, Z. Chase and M. M. Whitney (2006): Riverine input of macronutrients, iron and organic matter to the coastal ocean off Oregon, USA during the winter. Limnol. Oceanogr., 51, 2221–2231.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Debby Ianson
    • 1
    • 2
    Email author
  • Richard A. Feely
    • 3
  • Christopher L. Sabine
    • 3
  • Lauren W. Juranek
    • 3
  1. 1.Fisheries and Oceans CanadaSidneyCanada
  2. 2.School of Earth and Ocean SciencesUniversity of VictoriaVictoriaCanada
  3. 3.Pacific Marine Environmental LaboratorySeattleUSA

Personalised recommendations