Journal of Oceanography

, Volume 65, Issue 3, pp 373–396 | Cite as

Roles of vertical turbulent mixing in the ocean response to Typhoon Rex (1998)

  • Akiyoshi WadaEmail author
  • Hiroshi Niino
  • Hideyuki Nakano
Original Articles


How the role of vertical turbulent mixing (VTM) in sea surface cooling (SSC) varies with the moving speed of a tropical cyclone was examined for Typhoon Rex (1998) by using the Meteorological Research Institute Community Ocean Model (MRI.COM). The MRI.COM well reproduced TRMM/TMI three-day mean sea surface temperature (SST) fields along Rex’s track. During the fast-moving phase of Rex, SSC simulated by the MRI.COM was caused by shear-induced VTM on the right side of the track. During the slowly-moving phase, on the other hand, the Ekman-pumping area mostly overlapped the VTM area right behind Rex’s center. During the recurvature phase, cool water transported by the upwelling was more efficiently entrained into a mixed layer by the VTM for nearly a 1 near-inertial period after the passage of Rex. We then modified the entrainment formulation of Deardorff (1983), which was incorporated into a slab mixed-layer ocean model (SOM) so as to fit to the results simulated by the MRI.COM. The principal modifications are as follows: (1) consideration of turbulent kinetic energy (TKE) production caused by surface wave breaking; (2) increase in the coefficient for estimating dissipation to balance with TKE production due to turbulent transport; and (3) changing the initial guess for the critical Richardson number. These modifications led to an improvement of SST simulations by the SOM. The impact of the modifications on simulated SSTs turned out to be more significant than the impacts of initial mixed-layer depth and the difference between diurnally-varying and daily mean short-wave radiation.


Typhoon sea surface cooling vertical turbulent mixing Ekman pumping ocean model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bao, J.-W., J. M. Wilczak, J.-K. Choi and L. H. Kantha (2000): Numerical simulations of air-sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 2190–2210.CrossRefGoogle Scholar
  2. Bender, M. A., I. Ginis and Y. Kurihara (1993): Numerical simulations of the tropical cyclone-ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98, 23245–23263.CrossRefGoogle Scholar
  3. Chan, J. C. L., Y. Duan and L. K. Shay (2001): Tropical cyclone intensity change from a simple ocean-atmosphere Ocean Response to Typhoon Rex 395 coupled model. J. Atmos. Sci., 58, 154–172.CrossRefGoogle Scholar
  4. Chang, S. W. and R. A. Anthes (1978): Numerical simulations of the ocean’s nonlinear baroclinic response to translating hurricanes. J. Phys. Oceanogr., 8, 468–480.CrossRefGoogle Scholar
  5. Chen, S. S., J. F. Price, W. Zhao, M. A. Donelan and E. J. Walsh (2007): The CBLAST-hurricane program and the next generation fully coupled atmosphere-wave-ocean models for hurricane research and prediction. Bull. Amer. Meteorol. Soc., 88, 311–317.CrossRefGoogle Scholar
  6. Cione, J. J. and E. W. Uhlhorn (2003): Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 1783–1796.CrossRefGoogle Scholar
  7. Danabasoglu, G., W. G. Large, J. J. Tribbia, P. R. Gent, B. P. Briegleb and J. C. McWilliams (2006): Diurnal coupling in the tropical oceans of CCSM3. J. Climate, 19, 2347–2365.CrossRefGoogle Scholar
  8. D’Asaro, E. A. (2003): The ocean boundary layer below Hurricane Dennie. J. Phys. Oceanogr., 33, 561–579.CrossRefGoogle Scholar
  9. D’Asaro, E. A., T. B. Sanford, P. P. Niiler and E. J. Terrill (2007): Cold wake of Hurricane Frances. Geophys. Res. Lett., 34, L15609.Google Scholar
  10. Deardorff, J. W. (1983): A multi-limit mixed-layer entrainment formulation. J. Phys. Oceanogr., 13, 988–1002.CrossRefGoogle Scholar
  11. Elsberry, R. L., T. Fraim and R. Trapnell (1976): A mixed layer model of the oceanic thermal response to hurricanes. J. Geophys. Res., 81, 1153–1162.CrossRefGoogle Scholar
  12. Geisler, J. E. (1970): Linear theory of the response of a two layer ocean to a moving hurricane. Geophys. Fluid Dyn., 1, 249–272.CrossRefGoogle Scholar
  13. Gent, P. R. and J. C. McWilliams (1990): Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.CrossRefGoogle Scholar
  14. Ginis, I. (1995): Ocean response to tropical cyclone. p. 198–260. In Global Perspective on Tropical Cyclones, ed. by R. L. Elsberry, WMO/TD-No. 693.Google Scholar
  15. Goni, G. J. and J. A. Trinanes (2003): Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. EOS Trans. AGU, 84(51), 573, 577–578.CrossRefGoogle Scholar
  16. Griffies, S. M. and R. W. Hallberg (2000): Biharmonic friction with a Smagorinsky-like viscosity for use in large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128, 2935–2946.CrossRefGoogle Scholar
  17. Hong, C.-H. and J.-H. Yoon (2003): A three-dimensional numerical simulation of typhoon Holly in the northwestern Pacific Ocean. J. Geophys. Res., 108, 3282.CrossRefGoogle Scholar
  18. Hong, X., S. W. Chang, S. Raman, L. K. Shay and R. Hodur (2000): The interaction between hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon. Wea. Rev., 128, 1347–1365.CrossRefGoogle Scholar
  19. Ishikawa, I., H. Tsujino, M. Hirabara, H. Nakano, T. Yasuda and H. Ishizaki (2005): Meteorological Research Institute Community Ocean Model (MRI.COM) manual. Technical Reports of the Meteorological Research Institute, 47, 189 pp. (in Japanese).Google Scholar
  20. Jacob, S. D. and C. J. Koblinsky (2007): Effects of precipitation on the upper-ocean response to a hurricane. Mon. Wea. Rev., 135, 2207–2225.CrossRefGoogle Scholar
  21. Jacob, S. D. and L. K. Shay (2003): The role of oceanic mesoscale features on the tropical cyclone-induced mixed layer response: A case study. J. Phys. Oceanogr., 33, 649–676.CrossRefGoogle Scholar
  22. Jacob, S. D., L. K. Shay, A. J. Mariano and P. G. Black (2000): The 3D oceanic mixed layer response to hurricane Gilbert. J. Phys. Oceanogr., 30, 1407–1429.CrossRefGoogle Scholar
  23. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino and G. L. Potter (2002): NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteorol. Soc., 83, 1631–1643.CrossRefGoogle Scholar
  24. Kondo, J. (1975): Air-sea bulk transfer coefficients in diabatic conditions. Bound. Layer Meteorol., 9, 91–112.CrossRefGoogle Scholar
  25. Levitus, S. (1982): Climatological atlas of the world ocean. NOAA Publ. 13. U.S. Dept. of Comm., Washington, D.C., 173 pp.Google Scholar
  26. Lin, I.-I., W. T. Liu, C.-C. Wu, J. C. H. Chiang and C.-H. Sui (2003): Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys. Res. Lett., 30(3), 1131.CrossRefGoogle Scholar
  27. Lin, I.-I., C.-C. Wu, K. A. Emanuel, I.-H. Lee, C.-R. Wu and I.-F. Pun (2005): The interaction of supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 2635–2649.CrossRefGoogle Scholar
  28. Noh, Y. and H. J. Kim (1999): Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104, 15621–15634.CrossRefGoogle Scholar
  29. Park, J., K.-A. Park, K. Kim and Y.-H. Youn (2005): Statistical analysis of upper ocean temperature response to typhoons from ARGO floats and satellite data. IEEE International, 4, 2564–2567.Google Scholar
  30. Paulson, C. A. and J. J. Simpson (1977): Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7, 952–956.CrossRefGoogle Scholar
  31. Prasad, T. G. and P. J. Hogan (2007): Upper-ocean response to Hurricane Ivan in a 1/25° nested Gulf of Mexico HYCOM. J. Geophys. Res., 112, C04013.Google Scholar
  32. Price, J. F. (1981): Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175.CrossRefGoogle Scholar
  33. Price, J. F., R. A. Weller and R. Pinkel (1986): Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 8411–8427.CrossRefGoogle Scholar
  34. Price, J. F., J. Morzel and P. P. Niiler (2008): Warming of SST in the cool wake of a moving hurricane. J. Geophys. Res., 113, C07010.CrossRefGoogle Scholar
  35. Pudov, V. D. and S. A. Petrichenko (2000): Trail of a typhoon in the salinity field of the ocean upper l ayer. Izvestiya Acad. Sci., 36, 645–650.Google Scholar
  36. Pudov, V. D., A. A. Varfolomeyev and K. N. Fedorov (1978): Vertical structure of the wake of a typhoon in the upper ocean. Oceanology, 18, 142–146.Google Scholar
  37. Ramage, C. S. (1974): The typhoons of October 1970 in the South China Sea: Intensification, decay, and ocean interaction. J. Appl. Meteor., 13, 739–751.CrossRefGoogle Scholar
  38. Redi, M. H. (1982): Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 1154–1158.CrossRefGoogle Scholar
  39. Sanford, T. B., J. F. Price, J. B. Girton and D. C. Webb (2007): Highly resolved observations and simulations of the ocean response to a hurricane. Geophys. Res. Lett., 34, L13604.CrossRefGoogle Scholar
  40. Shay, L. K., A. J. Mariano, S. D. Jacob and E. D. Ryan (1998): Mean and near-inertial ocean current response to hurricane Gilbert. J. Phys. Oceanogr., 28, 858–889.CrossRefGoogle Scholar
  41. Shay, L. K., G. J. Goni and P. G. Black (2000): Effects of a warm oceanic feature on hurricane Opal. Mon. Wea. Rev., 128, 1366–1383.CrossRefGoogle Scholar
  42. Smith, R. D. and D. T. Sandwell (1997): Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 1956–1962.CrossRefGoogle Scholar
  43. Suzuki, S. (2000): A study on the mechanism of oceanic responses to a moving typhoon. Ph.D. dissertation, The Univs. of Tokyo, 128 pp. (in Japanese).Google Scholar
  44. Tujino, H., H. Hasumi and N. Suginohara (2000): Deep Pacific circulation controlled by vertical diffusivity at the lower thermocline depth. J. Phys. Oceanogr., 30, 2853–2865.CrossRefGoogle Scholar
  45. Usui, N., S. Ishizaki, Y. Fujii, H. Tsujino, T. Yasuda and M. Kamachi, (2006): Meteorological Research Institute Ocean Variational Estimation (MOVE) system: Some early results. J. Adv. Space Res., 37, 806–822.CrossRefGoogle Scholar
  46. Wada, A. (2002): The processes of SST cooling by typhoon passage and case study of Typhoon Rex with a mixed layer ocean model. Pap. Meteor. Geophys., 52, 31–66.CrossRefGoogle Scholar
  47. Wada, A. (2005): Numerical simulations of sea surface cooling by a mixed layer model during the passage of Typhoon Rex. J. Oceanogr., 61, 41–57.CrossRefGoogle Scholar
  48. Wada, A. (2007): Numerical problems associated with tropical cyclone intensity prediction using a sophisticated coupled typhoon-ocean model. Pap. Meteor. Geophys., 58, 103–126.CrossRefGoogle Scholar
  49. Wada, A. and N. Usui (2007): Importance of tropical cyclone heat potential for tropical cyclone intensity and intensification in the western North Pacific. J. Oceanogr., 63, 427–447.CrossRefGoogle Scholar
  50. Wada, A., N. Usui and H. Niino (2008a): The impact of oceanic observations on tropical cyclone intensity prediction in the case of Typhoon Namtheun (2004). CAS/JSC WGNE Research Activities in Atmosphere and Oceanic Modelling, 38, 9-03.Google Scholar
  51. Wada, A., H. Niino and H. Nakano (2008b): Sensitivity of tuning parameters in a mixed-layer scheme to simulated sea surface cooling caused by a passage of a typhoon. CAS/JSC WGNE Research Activities in Atmosphere and Oceanic Modelling, 38, 8–15.Google Scholar
  52. Walker, N. D., R. R. Leben and S. Balasubramanian (2005): Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett., 32, L18610.CrossRefGoogle Scholar
  53. Wang, Y. and C.-C. Wu (2004): Current understanding of tropical cyclone structure and intensity changes—a review. Meteorol. Atmos. Phys., 87, 257–278.CrossRefGoogle Scholar
  54. Wright, R. (1969): Temperature structure across the Kuroshio before and after typhoon Shirley. Tellus, 21, 409–413.CrossRefGoogle Scholar
  55. Wu, C.-C., C.-T. Lee and I.-I. Lin (2007): The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 3562–3578.CrossRefGoogle Scholar
  56. Zedler, S. E., T. D. Dickey, S. C. Doney, J. F. Price, X. Yu and G. L. Mellor (2002): Analyses and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Testbed Mooring site: 13–23 August 1995. J. Geophys. Res., 107(C12), 3232.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Meteorological Research Institute, Japan Meteorological AgencyNagamine, Tsukuba, IbarakiJapan
  2. 2.Minamidai, Nakano-ku, TokyoJapan

Personalised recommendations