Journal of Oceanography

, Volume 65, Issue 3, pp 287–299 | Cite as

Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections

  • Masayoshi IshiiEmail author
  • Masahide Kimoto
Original Articles


As reported in former studies, temperature observations obtained by expendable bathythermographs (XBTs) and mechanical bathythermographs (MBTs) appear to have positive biases as much as they affect major climate signals. These biases have not been fully taken into account in previous ocean temperature analyses, which have been widely used to detect global warming signals in the oceans. This report proposes a methodology for directly eliminating the biases from the XBT and MBT observations. In the case of XBT observation, assuming that the positive temperature biases mainly originate from greater depths given by conventional XBT fall-rate equations than the truth, a depth bias equation is constructed by fitting depth differences between XBT data and more accurate oceanographic observations to a linear equation of elapsed time. Such depth bias equations are introduced separately for each year and for each probe type. Uncertainty in the gradient of the linear equation is evaluated using a non-parametric test. The typical depth bias is +10 m at 700 m depth on average, which is probably caused by various indeterminable sources of error in the XBT observations as well as a lack of representativeness in the fall-rate equations adopted so far. Depth biases in MBT are fitted to quadratic equations of depth in a similar manner to the XBT method. Correcting the historical XBT and MBT depth biases by these equations allows a historical ocean temperature analysis to be conducted. In comparison with the previous temperature analysis, large differences are found in the present analysis as follows: the duration of large ocean heat content in the 1970s shortens dramatically, and recent ocean cooling becomes insignificant. The result is also in better agreement with tide gauge observations.


Ocean temperature XBT fall-rate equation oceanographic observation ocean heat content objective analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AchutaRao, K. M., M. Ishii, B. D. Santer, P. J. Gleckler, K. E. Taylor, T. P. Barnett, D. W. Pierce, R. J. Stouffer and T. M. L. Wigley (2007): Simulated and observed variability in ocean temperature and heat content. Proc. Natl. Acad. Sci., 104, 10768–10773.CrossRefGoogle Scholar
  2. Antonov, J. I., S. Levitus and T. P. Boyer (2004): Climatological annual cycle of ocean heat content. Geophys. Res. Lett., 31, L04304, doi:10.1029/2003GL018851.CrossRefGoogle Scholar
  3. Boyer, T. P., J. I. Antonov, H. E. Garcia, D. R. Johnson, R. A. Locarnini, A. Mishonov, M. T. Pitcher, O. K. Baranova and I. V. Smolyar (2006): World Ocean Database 2005. NOAA Atlas NESDIS 60, ed. by S. Levitus (available at
  4. Conkright, M. E., R. A. Locarnini, H. E. Garcia, T. D. O. Brien, T. P. Boyer, C. Stephens and J. I. Antonov (2001): World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures. NOAA Atlas NESDIS 42, 17 pp., CD-ROM, U.S. Government Printing Office, Washington, D.C.Google Scholar
  5. Fahrbach, E. (1989): The use of electronic digital thermometers and pressure meters. WOCE Newsletter No. 8, 12–13.Google Scholar
  6. Gouretski, V. and K. P. Koltermann (2007): How much is the ocean really warming. Geophys. Res. Lett., 34, L01610, doi:10.1029/2006GL027834.CrossRefGoogle Scholar
  7. Hanawa, K., P. Raul, R. Bailey, A. Sy and M. Szabados (1995): A new depth-time equation for Sippican or TSK T-7, T-6, and T-4 expendable bathythermographs (XBTs). Deep-Sea Res., 42, 1423–1451.CrossRefGoogle Scholar
  8. Ishii, M., M. Kimoto and M. Kachi (2003): Historical ocean subsurface temperature analysis with error estimates. Mon. Wea. Rev., 131, 51–73.CrossRefGoogle Scholar
  9. Ishii, M., M. Kimoto, K. Sakamoto and S.-I. Iwasaki (2006): Steric sea level changes estimated from historical subsurface temperature and salinity analyses. J. Oceanogr., 61, 155–170.CrossRefGoogle Scholar
  10. Kizu, S. and K. Hanawa (2002): Recorder-dependent temperature error of expendable bathythermograph. J. Oceanogr., 58, 469–476.CrossRefGoogle Scholar
  11. Kizu, S., H. Yoritaka and K. Hanawa (2005): A new fall-rate equation for T-5 expendable bathythermograph (XBT) by TSK. J. Oceanogr., 61, 115–121.CrossRefGoogle Scholar
  12. Levitus, S. and J. Antonov (1997): Limatological and Interannual Variability of Temperature, Heat Storage, and Rate of Heat Storage in the Upper Ocean. NOAA Atlas NESDIS 16, 186 pp.Google Scholar
  13. Levitus, S., C. Stephens, J. I. Antonov and T. P. Boyer (2000): Yearly and Year-Season Upper Ocean Temperature Anomaly Fields, 1948-1998. NOAA Atlas NESDIS 40 (available from
  14. Levitus, S., J. I. Antonov, T. P. Boyer, H. E. Garcia and R. A. Locarnini (2005): Linear trends of zonally averaged thermosteric, halosteric, and total steric sea level for individual ocean basins and the world ocean, (1955–1959)–(1994–1998). Geophys. Res. Lett., 32, L16601, doi: 10.1029/2005GL023761.CrossRefGoogle Scholar
  15. Lombard, A., A. Cazenave, P.-Y. Le Traon and M. Ishii (2005): Contribution of thermal expansion to present-day sea-level change revisited. Global and Planetary Change, 47, 1–16.CrossRefGoogle Scholar
  16. Lombard, A., D. Garcia, G. Ramillien, A. Cazenave, R. Biancale, J. M. Lemoine, F. Flechtner, R. Schmidt and M. Ishii (2007): Estimation of steric sea level variations from combined GRACE and Jason-1 data. Earth Planet. Sci. Lett., 254, 194–202.CrossRefGoogle Scholar
  17. Quadfasel, D., N. Verch and J. Langhof (1990): Are mercury deep-sea reversing thermometers out of date? Ocean Dynamics, 145–152.Google Scholar
  18. Reynolds, R. W. and T. M. Smith (1994): Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929–948.CrossRefGoogle Scholar
  19. Sakamoto, T., H. Hasumi, M. Ishii, S. Emori, T. Suzuki, T. Nishimura and A. Sumi (2005): Responses of the Kuroshio and the Kuroshio Extension to global warming in a highresolution climate model. Geophys. Res. Lett., 32, doi:10.1029/2005GL023384.CrossRefGoogle Scholar
  20. Smith, D. M. and J. M. Murphy (2007): An objective ocean temperature and salinity analysis using covariances from a global climate model. J. Geophys. Res., 112, C02022, doi:10.1029/2005JC003172.CrossRefGoogle Scholar
  21. Wijffels, S., J. Willis, C. M. Domingues, P. Baker, N. J. White, A. Cronell, K. Ridgway and J. A. Church (2008): Changing expendable bathythermograph fallrates and their impact on estimates of thermosteric sea level rise. J. Climate, 21, 5657–5672.CrossRefGoogle Scholar
  22. Willis, J. K., D. Roemmich and B. Cornuelle (2004): Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J. Geophys. Res., 109, C12036, doi: 10.1029/2003JC002260.CrossRefGoogle Scholar
  23. Willis, J. K., J. M. Lyman, G. C. Johnson and J. Gilson (2008): In situ data biases and recent ocean heat content variability. J. Atmos. Oceanic Tech. (in press).Google Scholar
  24. Wyatt, B., R. Still, D. Barstow and W. Gilbert (1967): Hydrographic Data from Oregon Waters 1965. Department Oceanography, School of Science, Oregon State Univ. Date Report No. 27.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Frontier Research Center for Global Change, Japan Agency for Marine-Earth Science and TechnologyShowamachi, Kanazawa-ku, YokohamaJapan
  2. 2.Center for Climate System ResearchThe University of TokyoKashiwaJapan

Personalised recommendations