Journal of Oceanography

, Volume 65, Issue 2, pp 235–244 | Cite as

Long-term bottom water warming in the north Ross Sea

  • Hirokazu OzakiEmail author
  • Hajime Obata
  • Mikio Naganobu
  • Toshitaka Gamo
Original Articles


We measured potential temperature, salinity, and dissolved oxygen profiles from the surface to the bottom at two locations in the north Ross Sea (65.2°S, 174.2°E and 67.2°S, 172.7°W) in December 2004. Comparison of our data with previous results from the same region reveals an increase in potential temperature and decreases in salinity and dissolved oxygen concentration in the bottom layer (deeper than 3000 m) over the past four decades. The changes were significantly different from the analytical precisions. Detailed investigation of the temperature, salinity, dissolved oxygen and σ 3 value distributions and the bottom water flow in the north Ross Sea suggests a long-term change in water mass mixing balance. That is to say, it is speculated that the influence of cool, saline, high-oxygen bottom water (high-salinity Ross Sea Bottom Water) formed in the southwestern Ross Sea has possibly been decreased, while the influences of relatively warmer and fresher bottom water (low-salinity Ross Sea Bottom Water) and the Adélie Land Bottom Water coming from the Australia-Antarctic Basin have increased. The possible impact of global warming on ocean circulation needs much more investigation.


Bottom water circulation dissolved oxygen long-term change potential temperature Ross Sea salinity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoki, S., S. R. Rintoul, S. Ushio, S. Watanabe and N. L. Bindoff (2005): Freshening of the Adélie Land Bottom Water near 140°E. Geophys. Res. Lett., 32, L23601.CrossRefGoogle Scholar
  2. Broecker, W. S. (1991): The great ocean conveyor. Oceanography, 4, 79–89.Google Scholar
  3. Broecker, W. S., D. W. Spencer and H. Craig (1982): GEOSECS Pacific Expedition Vol. 3, Hydrographic Data 1973–1974. U.S. Government Printing Office, Washington, D.C., 137 pp.Google Scholar
  4. Bryden, H. L., H. R. Longworth and S. A. Cunningham (2005): Slowing of the Atlantic meridional overturning circulation at 25°N. Nature, 438, 655–657.CrossRefGoogle Scholar
  5. Climate Variability and Predictability (CLIVAR) and Carbon Hydrographic Data Office (CHDO) web page,
  6. Cunningham, S. A., K. Torsten, D. Rayner, M. O. Baringer, W. E. Johns, J. Marotzke, H. R. Longworth, E. M. Grant, Joël J.-M. Hirschi, L. M. Beal, C. S. Meinen and H. L. Bryden (2007): Temporal variability of the Atlantic Meridional Overturning Circulation at 26.5°N. Science, 317, 935–938.CrossRefGoogle Scholar
  7. Fukasawa, M., H. Freeland, R. Perkin, T. Watanabe, H. Uchida and A. Nishida (2004): Bottom water warming in the North Pacific Ocean. Nature, 427, 825–827.CrossRefGoogle Scholar
  8. Fyfe, J. C. (2006): Southern Ocean warming due to human influence. Geophys. Res. Lett., 33, L19701.CrossRefGoogle Scholar
  9. Gamo, T. (1999): Global warming may slowed down the deep conveyor belt of marginal sea of the north-western Pacific: Japan Sea. Geophys. Res. Lett., 26, 3141–3144.CrossRefGoogle Scholar
  10. Gamo, T., N. Momoshima and S. Tolmachyov (2001): Recent upward shift of the deep convection system in the Japan Sea, as inferred from the geochemical tracers tritium, oxygen, and nutrients. Geophys. Res. Lett., 28, 4143–4146.CrossRefGoogle Scholar
  11. Gamo, T., Y. Sano and K. Kogure (eds.) (2005): Cruise Report of the Hakuho Maru Cruise KH-04-5 (Southern Cross II Expedition). Ocean Research Institute, the University of Tokyo, 241 pp. (to be published).Google Scholar
  12. Gille, S. T. (2002): Warming of the southern ocean since the 1950s. Science, 295, 1275–1277.CrossRefGoogle Scholar
  13. Gordon, A. L. and P. T. Tchernia (1972): Waters of the continental margin off Adélie Coast, Antarctica. p. 59–69. In Antarctic Oceanogrphy II: The Austrarian-New Zealand Sector, Antarctic Research Series, Vol. 9, ed. by D. E. Hayes, American Geophysical Union, Washington, D.C.Google Scholar
  14. Horibe, Y. (1970): Preliminary Report of the Hakuho-maru cruise KH-68-4 (Southern Cross Cruise). Ocean Research Institute, the University of Tokyo, 170 pp.Google Scholar
  15. IPCC WG I (2007): Fourth Assessment Report, Climate Change 2007—The Physical Science Basis. 996 pp.Google Scholar
  16. Jacobs, S. S. (2006): Observations of change in the Southern Ocean. Philosophical Transactions of the Royal Society A—Mathematical Physical and Engineering Science, 364, 1657–1681.CrossRefGoogle Scholar
  17. Jacobs, S. S., A. F. Amos and P. M. Bruchhausen (1970): Ross Sea oceanography and Antarctic Bottom Water formation. Deep-Sea Res., 17, 935–962.Google Scholar
  18. Jacobs, S. S., C. F. Giulivi and P. A. Mele (2002): Freshening of the Ross Sea during the late 20th century. Science, 297, 386–389.CrossRefGoogle Scholar
  19. Johnson, G. C. and S. C. Doney (2006): Recent western South Atlantic bottom water warming. Geophys. Res. Lett., 33, L14614.CrossRefGoogle Scholar
  20. Kawano, T., M. Aoyama, T. Joyce, H. Uchida, Y. Takatsuki and M. Fukasawa (2006): The latest batch-to-batch difference table of standard seawater and its application to the WOCE onetime sections. J. Oceanogr., 62, 777–799.CrossRefGoogle Scholar
  21. Levitus, S., J. I. Antonov, T. P. Boyer and C. Stephens (2000): Warming of the world ocean. Science, 287, 2225–2229.CrossRefGoogle Scholar
  22. Manabe, S., R. J. Stouffer, M. J. Spelman and K. Bryan (1991): Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part 1: Annual mean response. J. Climate, 4, 785–818.CrossRefGoogle Scholar
  23. Orsi, A. H., G. C. Johnson and J. B. Bullister (1999): Circulation, mixing and production of Antarctic Bottom Water. Prog. Oceanogr., 43, 55–109.CrossRefGoogle Scholar
  24. Orsi, A. H., W. M. Smethie, Jr. and J. L. Bullister (2002): On the total input of Antarctic waters to the deep ocean: A preliminary estimate from chlorofluorocarbon measurements. J. Geophys. Res., 107, 3122.CrossRefGoogle Scholar
  25. Peterson, B. J., J. McClelland, R. Curry, R. M. Holmes, J. E. Walsh and K. Aagaard (2006): Trajectory shifts in the Arctic and Subarctic freshwater cycle. Science, 313, 1061–1066.CrossRefGoogle Scholar
  26. Rahmstorf, S. (2006): Glacial climates: Thermohaline Circulation. p. 739–750. In Encyclopedia of Quaternary Sciences, Vol. 1, ed. by S. A. Elias, Elsevier, Amsterdam.Google Scholar
  27. Rignot, E. and S. S. Jacobs (2002): Rapid bottom melting wide-spread near Antarctic ice sheet grounding lines. Science, 296, 2020–2023.CrossRefGoogle Scholar
  28. Rintoul, S. R. (1998): On the origin and influence of Adélie Land Bottom Water, in Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin. p. 151–171. In Antarc. Res. Ser., 75, ed. by S. Jacobs and R. Weiss, American Geophysical Union, Washington, D.C.Google Scholar
  29. Rintoul, S. R. (2007): Rapid freshing of Antarctic Bottom Water formed in the Indian and Pacific oceans. Geophys. Res. Lett., 34, L06606.CrossRefGoogle Scholar
  30. Shepherd, A., D. Wingham and J. Mansley (2001a): Rapid glacier thinning along the Amundsen Coast, West Antarctica. Eos Trans. AGU, 82(47), F537.Google Scholar
  31. Shepherd, A., D. Wingham, J. Mansley and H. Corr (2001b): Inland thinning of Pine Island Glacier, West Antarctica. Science, 291, 862–864.CrossRefGoogle Scholar
  32. Shepherd, A., D. Wingham and E. Rignot (2004): Warm ocean is eroding West Antarctic ice sheet. Geophys. Res. Lett., 31, L23402.CrossRefGoogle Scholar
  33. Turner, J., S. R. Colwell, G. J. Marshall, T. A. Lachlan-Cope, A. M. Carleton, P. D. Jones, V. Lagun, P. A. Reid and S. Iagovkina (2005): Antarctic climate change during the last 50 years. Int. J. Climatol., 25, 279–294.CrossRefGoogle Scholar
  34. WOCE (1994): Requirements for WOCE Hydrographic Programme Data Reporting, WHPO Publication 90-1, Revision 2, May 1994 (WOCE Report 67/91), 144 pp.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Hirokazu Ozaki
    • 1
    Email author
  • Hajime Obata
    • 1
  • Mikio Naganobu
    • 2
  • Toshitaka Gamo
    • 1
  1. 1.Marine Inorganic Chemistry Group, Ocean Research InstituteThe University of TokyoMinamidai, Nakano-ku, TokyoJapan
  2. 2.Southern Ocean Living Resources Research Section, Oceanic Resources DivisionNational Research Institute of Far Seas FisheriesFukuura, Kanazawa-ku, Yokohama, KanagawaJapan

Personalised recommendations