Journal of Oceanography

, 64:789

Numerical study of baroclinic tides in Luzon Strait

Original Articles


The spatial and temporal variations of baroclinic tides in the Luzon Strait (LS) are investigated using a three-dimensional tide model driven by four principal constituents, O1, K1, M2 and S2, individually or together with seasonal mean summer or winter stratifications as the initial field. Barotropic tides propagate predominantly westward from the Pacific Ocean, impinge on two prominent north-south running submarine ridges in LS, and generate strong baroclinic tides propagating into both the South China Sea (SCS) and the Pacific Ocean. Strong baroclinic tides, ∼19 GW for diurnal tides and ∼11 GW for semidiurnal tides, are excited on both the east ridge (70%) and the west ridge (30%). The barotropic to baroclinic energy conversion rate reaches 30% for diurnal tides and ∼20% for semidiurnal tides. Diurnal (O1 and K1) and semidiurnal (M2) baroclinic tides have a comparable depth-integrated energy flux 10–20 kW m−1 emanating from the LS into the SCS and the Pacific basin. The spring-neap averaged, meridionally integrated baroclinic tidal energy flux is ∼7 GW into the SCS and ∼6 GW into the Pacific Ocean, representing one of the strongest baroclinic tidal energy flux regimes in the World Ocean. About 18 GW of baroclinic tidal energy, ∼50% of that generated in the LS, is lost locally, which is more than five times that estimated in the vicinity of the Hawaiian ridge. The strong westward-propagating semidiurnal baroclinic tidal energy flux is likely the energy source for the large-amplitude nonlinear internal waves found in the SCS. The baroclinic tidal energy generation, energy fluxes, and energy dissipation rates in the spring tide are about five times those in the neap tide; while there is no significant seasonal variation of energetics, but the propagation speed of baroclinic tide is about 10% faster in summer than in winter. Within the LS, the average turbulence kinetic energy dissipation rate is O(10−7) W kg− 1 and the turbulence diffusivity is O(10−3) m2s−1, a factor of 100 greater than those in the typical open ocean. This strong turbulence mixing induced by the baroclinic tidal energy dissipation exists in the main path of the Kuroshio and is important in mixing the Pacific Ocean, Kuroshio, and the SCS waters.


Numerical model baroclinic tides seasonal fortnightly Luzon Strait 


  1. Alford, M. H. (2003): Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159–163.CrossRefGoogle Scholar
  2. Alford, M. H., M. C. Gregg and M. A. Merrifield (2006): Structure, propagation, and mixing of energetic baroclinic tides in Mamala Bay, Oahu, Hawaii. J. Phys. Oceanogr., 36, 997–1018.CrossRefGoogle Scholar
  3. Blumberg, A. F. and L. H. Kantha (1985): Open boundary condition for circulation models. J. Hydra. Eng., 111(2), 237–255.CrossRefGoogle Scholar
  4. Blumberg, A. F. and G. F. Mellor (1987): A description of a three dimensional coastal ocean circulation model. p. 1–16. In Three-Dimensional Coastal Ocean Models, Coastal and Estuarine Stud., Vol. 4, ed. by N. Heaps, AGU, Washington, D.C.Google Scholar
  5. Centurioni, L. R., P. P. Niller and D.-K. Lee (2004): Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait. J. Phys. Oceanogr., 34, 113–121.CrossRefGoogle Scholar
  6. Chang, M.-H., R.-C. Lien, T. Y. Tang, E. A. D’Asaro and Y. J. Yang (2006): Energy flux of nonlinear internal waves in northern South China Sea. Geophys. Res. Lett., 33, L03607, doi: 10.1029/2005GL025196.CrossRefGoogle Scholar
  7. Chao, S.-Y., D.-S. Ko, R.-C. Lien and P.-T. Shaw (2007): Assessing the west ridge of Luzon Strait as an internal wave mediator. J. Oceanogr., 63, 897–911.CrossRefGoogle Scholar
  8. Duda, T. F., J. F. Lynch, J. D. Irish, R. C. Beardsley, S. R. Ramp, C.-S. Chiu, T.-Y. Tang and Y.-J. Yang (2004): Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE J. Oceanic Eng., 29(4), 1105–1130.CrossRefGoogle Scholar
  9. Fang, G., Y.-K. Kwok, K. Yu and Y. Zhu (1999): Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Cont. Shelf Res., 19, 845–869.CrossRefGoogle Scholar
  10. Foreman, M. G. G., R. F. Henry, R. A. Walters and V. A. Ballantyne (1993): A finite element model for tides and resonance along the north coast of British Columbia. J. Geophys. Res., 98, 2509–2532.CrossRefGoogle Scholar
  11. Gerkema, T. and J. T. F. Zimmerman (1995): Generation of nonlinear internal tides and solitary waves. J. Phys. Oceanogr., 25, 1081–1094.CrossRefGoogle Scholar
  12. Hu, J., H. Kawamura, H. Hong and Y. Qi (2000): A review on the currents in the South China Sea: seasonal circulation, South China Sea Current and Kuroshio intrusion. J. Oceanogr., 56, 607–624.CrossRefGoogle Scholar
  13. Jan, S., C.-S. Chern and J. Wang (2002): Transition of tidal waves from the East to South China Seas over the Taiwan Strait: Influence of the abrupt step in the topography. J. Oceanogr., 58, 837–850.CrossRefGoogle Scholar
  14. Jan, S., C.-T. A. Chen, Y.-Y. Tu and H.-S. Tsai (2004): Physical properties of thermal plumes from a nuclear power plant in the southernmost Taiwan. J. Mar. Sci. Tech., 12(5), 433–441.Google Scholar
  15. Jan, S., C.-S. Chern, J. Wang and S.-Y. Chao (2007): Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea. J. Geophys. Res., 112, C06019, doi: 10.1029/2006JC004003.CrossRefGoogle Scholar
  16. Klymak, J. M., J. N. Moum, J. D. Nash, E. Kunze, J. B. Girton, G. S. Carter, C. M. Lee, T. B. Sanford and M. C. Gregg (2006): An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 1148–1164.CrossRefGoogle Scholar
  17. Lee, C. M., E. Kunze, T. B. Sanford, J. D. Nash, M. A. Merrifield and P. E. Holloway (2006): Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge. J. Phys. Oceanogr., 36, 1165–1183.CrossRefGoogle Scholar
  18. Lefevre, F., C. Le Provost and F. H. Lyard (2000): How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China Sea. J. Geophys. Res., 105(C4), 8707–8725.CrossRefGoogle Scholar
  19. Li, L., W. D. Nowlin, Jr. and J. Su (1998): Anticyclonic rings from the Kuroshio in the South China Sea. Deep-Sea Res. I, 45, 1469–1482.CrossRefGoogle Scholar
  20. Lien, R. C. and M. C. Gregg (2001): Observations of turbulence in a tidal beam and across a coastal ridge. J. Geophys. Res., 106, 4575–4591.CrossRefGoogle Scholar
  21. Lien, R.-C., T. Y. Tang, M. H. Chang and E. A. D’Asaro (2005): Energy of nonlinear internal waves in the South China Sea. Geophys. Res. Lett., 32, L05615.CrossRefGoogle Scholar
  22. Lueck, R. G. and T. D. Mudge (1997): Topographically induced mixing around a shallow seamount. Science, 276, 1831–1833.CrossRefGoogle Scholar
  23. Matsumoto, K., T. Takanezawa and M. Ooe (2000): Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan. J. Oceanogr., 56, 567–581.CrossRefGoogle Scholar
  24. Metzger, E. J. and H. E. Hurlbert (1996): Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. J. Geophys. Res., 101, 12331–12352.CrossRefGoogle Scholar
  25. Niwa, Y. and T. Hibiya (2004): Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res., 109, C04027, doi:10.1029/2003JC001923.CrossRefGoogle Scholar
  26. Osborn, T. R. (1980): Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 83–89.CrossRefGoogle Scholar
  27. Pugh, D. T. (1987): Tides, Surges and Mean Sea-Level. Wiley, Chichester, 471 pp.Google Scholar
  28. Qu, T., J. B. Griton and J. A. Whitehead (2006): Deepwater overflow through Luzon Strait. J. Geophys. Res., 111, C01002, doi:10.1029/2005JC003139.CrossRefGoogle Scholar
  29. Rainville, L. and R. Pinkel (2004): Observations of energetic high-wavenumber internal waves in the Kuroshio. J. Phys. Oceanogr., 36, 1104–1122.CrossRefGoogle Scholar
  30. Ramp, S. R., T.-Y. Tang, T. F. Duda, J. F. Lynch, A. K. Liu, C.-S. Chiu, F. L. Bahr, H.-R. Kim and Y.-J. Yang (2004): Internal solitons in the northeastern South China Sea Part I: sources and deep water propagation. IEEE J. Oceanic Eng., 29(4), 1157–1181.CrossRefGoogle Scholar
  31. Tian, J., Q. Yang, X. Liang, L. Xie, D. Hu, F. Wang and T. Qu (2006): Observation of Luzon Strait transport. Geophys. Res. Lett., 33, L19607, doi:10.1029/2006GL026272.CrossRefGoogle Scholar
  32. Toole, J. M., R. W. Schmitt and K. L. Polzin (1994): Estimates of diapycnal mixing in the abyssal Ocean. Science, 264(5162), 1120–1132, DOI: 10.1126.CrossRefGoogle Scholar
  33. Yanagi, T. and T. Takao (1998): A numerical simulation of tides and tidal currents in the South China Sea. Acta Oceanogr. Taiwan., 37(1), 17–29.Google Scholar
  34. Yang, Y. J., T.-Y. Tang, M.-H. Chang, A. K. Liu, M.-K. Hsu and S. R. Ramp (2004): Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies. IEEE J. Oceanic Eng., 29, 1182–1199.CrossRefGoogle Scholar
  35. Zhao, Z. and M. H. Alford (2006): Source and propagation of internal solitary waves in the northeastern South China Sea. J. Geophys. Res., 111, C11012, doi:10.1029/2006JC003644.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute of Hydrological and Oceanic SciencesNational Central UniversityJung-liTaiwan, R.O.C.
  2. 2.Applied Physics LaboratoryUniversity of WashingtonSeattleUSA

Personalised recommendations