Journal of Oceanography

, Volume 64, Issue 4, pp 621–630 | Cite as

Storm surge simulation using wind-wave-surge coupling model

  • Kyeong Ok KimEmail author
  • Takao Yamashita
Original Articles


Simulation of a storm surge caused by Typhoon 9918 in the Yatsushiro Sea, Kyushu, Japan was hindcasted by the synchronous coupled wind-wave-surge model composed of a Meso-scale meteorological model (MM5) for the wind and sea surface pressure, a spectral third-generation wind-wave model (Wavewatch III) for waves, and the coastal ocean model (Princeton Ocean Model). Inclusion of the whitecap wave breaking stresses (whitecap dissipation stress) in the coastal ocean model made it possible to reproduce the extreme surge height in the extremely shallow bay.


Storm surge wind-wave-surge interaction Typhoon 9918 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Battjes, J. A. and J. P. F. M. Janssen (1978): Energy loss and set-up due to breaking in random waves. Proc. 16th Int. Conf. Coastal Eng., 569–587.Google Scholar
  2. Choi, B. H., H. M. Eum and S. B. Woo (2003): Modeling of coupled tide-wave-surge process in the Yellow Sea. Ocean Eng., 30, 739–759.CrossRefGoogle Scholar
  3. Davis, C. A. and S. Low-Nam (2001): The NCAR-AFWA tropical cyclone bogussing scheme. A report prepared for the Air Force Weather Agency, AFWA.Google Scholar
  4. Deigaard, R. and J. Fredsøe (1989): Shear stress distribution in dissipative water waves. Coastal Eng., 13, 357–378.CrossRefGoogle Scholar
  5. Donelan, M. A. and W. M. Drennan (1997): The air-sea momentum flux in conditions of wind sea and swell. J. Phys. Oceanogr., 27, 2087–2099.CrossRefGoogle Scholar
  6. Drennan, W. M., G. C. Graber, D. Hauser and C. Quentin (2003): On the wave age dependence of wind stress over pure wind seas. J. Geophys. Res., 108, 8062, doi:10.1029/2000JC000715.CrossRefGoogle Scholar
  7. Fujii, T., J. Maeda, N. Ishida and T. Hayashi (2002): An analysis of a pressure pattern in severe Typhoon Bart hitting the Japanese Islands in 1999 and a comparison of the gradient wind with the observed surface wind. Journal of Wind Engineering and Industrial Aerodynamics, 90, 1555–1568.CrossRefGoogle Scholar
  8. Grant, W. D. and O. S. Madsen (1986): The continental shelf bottom boundary layer. Annu. Rev. Fluid Mech., 18, 265–305.CrossRefGoogle Scholar
  9. Grell, G. A., J. Dudhia and D. R. Stauffer (1991): A description of the fifth-generation Penn State NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, NCAR.Google Scholar
  10. Janssen, P. A. E. M. (1991): Quasi-linear theory of wind wave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 1631–1642.CrossRefGoogle Scholar
  11. Johnson, H. K., J. Højstrup, H. J. Vested and S. E. Larsen (1998): On the dependence of sea surface roughness on wind waves. J. Phys. Oceanogr., 28, 1702–1716.CrossRefGoogle Scholar
  12. Kato, S. and T. Yamashita (2000): Three-dimensional model for wind, wave-induced coastal currents and its verification by ADCP observations in the nearshore zone. Proc. 27th Int. Conf. Coastal Eng., 3777–3790.Google Scholar
  13. Kim, K. and T. Yamashita (2004): Hindcast of storm surge and wave fields of Typhoon 9918 by wind-wave-current coupled model. Annual Journal of Coastal Engineering, JSCE, 51, 236–240 (in Japanese).CrossRefGoogle Scholar
  14. Kim, K. and T. Yamashita (2005): Reanalysis of storm surge caused by Cyclone in 1991 in Bay of Bengal: Effects of whitecap dissipation in wave-surge coupled model. Annual Journal of Coastal Engineering, JSCE, 52, 211–215 (in Japanese).CrossRefGoogle Scholar
  15. Lionello, P., P. Malguzzi and A. Buzzi (1998): Coupling between the atmospheric circulation and the ocean wave field: An idealized case. J. Phys. Oceanogr., 28, 161–177.CrossRefGoogle Scholar
  16. Longuet-Higgins, M. S. and R. W. Stewart (1964): Radiation stress in water waves, a physical discussion with application. Deep-Sea Res., 11, 529–563.Google Scholar
  17. Mastenbroek, C., G. Burgers and P. A. E. M. Janssen (1993): The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer. J. Phys. Oceanogr., 23, 1856–1866.CrossRefGoogle Scholar
  18. Mathisen, P. P. and O. S. Madsen (1999): Waves and currents over a fixed rippled bed: III. Bottom and apperent roughness for spectral wave and currents. J. Geophys. Res., 1004, 18447–18461.CrossRefGoogle Scholar
  19. Matsumoto, K., T. Takanezawa and M. Ooe (2000): Ocean tide models developed by assimilating TOPEX/POSEIDON Altimeter Data into hydrodynamical model: A global model and a regional model around Japan. J. Oceanogr., 56, 567–581.CrossRefGoogle Scholar
  20. Mellor, G. L. (1996): User’s Guide for a Three Dimensional, Primitive Equation Numerical Ocean Model. Princeton University Press, Princeton, NJ, 39 pp.Google Scholar
  21. Mitsuta, Y. and T. Fujii (1987): An analysis and synthesis of typhoon wind over Japan. Bull. Disas. Prev. Res. Inst., Kyoto Univ., 37, 169–185.Google Scholar
  22. Moon, I. J. (2005): Impact of a coupled ocean wave-tide-circulation system on coastal modeling. Ocean Modelling, 8, 203–236.CrossRefGoogle Scholar
  23. Nairn, R. B., J. A. Roelvink and H. N. Southgate (1990): Transition zone with and implications for modeling surfzone hydrodynamics. Proc. 22nd Int. Conf. Coastal Eng., ASCE, 68–82.Google Scholar
  24. Ozer, J., R. Padilla-Hernández, J. Monbaliu, E. A. Fanjul, J. C. C. Albiach, P. Osuna, J. C. S. Yu and J. Wolf (2000): A coupling module for tides, surge and waves. Coastal Eng., 41, 95–124.CrossRefGoogle Scholar
  25. Reisner, J., R. M. Rasmussen and R. T. Bruintjes (1998): Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071–1107.CrossRefGoogle Scholar
  26. Reynolds, R. W. and T. M. Smith (1994): Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929–948.CrossRefGoogle Scholar
  27. Smith, S. D. (1980): Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr., 10, 709–726.CrossRefGoogle Scholar
  28. Smith, S. D. and E. G. Banke (1975): Variation of the sea surface drag coefficient with wind speed. Quart. J. Roy. Meteor. Soc., 101, 665–673.CrossRefGoogle Scholar
  29. Smith, S. D. and coauthors (1992): Sea surface wind stress and drag coefficients: The HEXOS results. Bound.-Layer Meteor., 60, 109–142.CrossRefGoogle Scholar
  30. Takikawa, K., C. Aoyama and K. Tanaka (2004): Characteristics of environment and tidal current in the Ariake Sea. Proc. of Asian and Pacific Coasts 2003, Tokyo, Japan, p. 1–10.Google Scholar
  31. Toba, Y., N. Iida, H. Kawamura, N. Ebuchi and I. S. E. Jones (1990): The wave dependence of sea-surface wind stress. J. Phys. Oceanogr., 20, 705–721.CrossRefGoogle Scholar
  32. Tolman, H. L. (1991): Effects of tides and storm surges on North Sea wind waves. J. Phys. Oceanogr., 21, 766–781.CrossRefGoogle Scholar
  33. Tolman, H. L. (2002): User Manual and System Documentation of WAVEWATCH-III Version 2.22. NOAA/NWS/NCEP/MMAB Technical Note 222, 133 pp.Google Scholar
  34. Tolman, H. L. and D. V. Chalikov (1996): Source terms in a third-generation wind-wave model. J. Phys. Oceanogr., 26, 2497–2518.CrossRefGoogle Scholar
  35. Tsukamoto, H. and T. Yanagi (2002): Tide and tidal current in Ariake Bay. Umi to Sora (Sea and Air), 78, 31–38.Google Scholar
  36. Yamashita, T. and Y. Nakagawa (2001): Simulation of storm surges caused by T.9918 by means of numerical model considering whitecap dissipation stresses. Proc. of Coastal Eng., JSCE, 48, 291–295.CrossRefGoogle Scholar
  37. Zhang, H., O. S. Madsen, S. A. Sannasiraj and E. S. Chan (2004): Hydrodynamic model with wave-current interaction in coastal regions. Estuar., Coast. Shelf Sci., 61, 317–324.CrossRefGoogle Scholar
  38. Zhang, M. Y. and Y. S. Li (1996): The synchronous coupling of a third-generation wave model and a two-dimensional storm surge model. Ocean Eng., 23, 533–543.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Graduate School for International Development and CooperationHiroshima UniversityKagamiyama, Higashi-HiroshimaJapan

Personalised recommendations