Journal of Oceanography

, Volume 64, Issue 4, pp 541–550 | Cite as

Isotope dilution sector-field inductively coupled plasma mass spectrometry combined with extraction chromatography for rapid determination of 241Am in marine sediment samples: A case study in Sagami Bay, Japan

  • Jian ZhengEmail author
  • Masatoshi Yamada
Original Articles


241Am is a useful tracer for understanding biogeochemical processes in the marine environment. 241Am also poses a potential radiation threat to human health due to the continuous increase of its concentration in the global environment. We report a rapid analytical method for determining 241Am in marine sediments using isotope dilution sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) combined with a high-efficiency sample introduction system (APEX-Q). A selective CaF2 co-precipitation procedure followed by TRU extraction chromatography was employed to effectively remove the major sediment matrix and to pre-concentrate 241Am. We achieved an extremely low detection limit of 0.32 fg/g or 0.041 mBq/g (for 1 gram sediment), which is better than that of alpha spectrometry, and it allowed the accurate determination of 241Am in low-level marine sediment samples. The accuracy and precision of the developed analytical method was evaluated using a laboratory prepared Am isotope standard solution and Ocean Sediment reference material (IAEA-368). The results were satisfactory. For sediment samples, overall chemical recoveries varied from 60–90%. The developed method was applied to the study of 241Am depth distribution in Sagami Bay, Japan, where we observed different depth profiles between 241Am activity and 239+240Pu activity.


Isotope dilution SF-ICP-MS extraction chromatography 241Am marine sediments Sagami Bay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarande, M., S. Benzoubir, P. Bouisset and D. Calmet (2001): Determination of 241Am in sediments by isotope dilution high resolution inductively coupled plasma sector field spectrometry (ID HR ICP-MS). Appl. Radiat. Isot., 55, 161–165.CrossRefGoogle Scholar
  2. Epov, V. N., K. Benkhedda, D. Brownell, R. J. Cornett and R. D. Evans (2005): Comparative study of three sample preparation approaches for the fast determination of americium in urine by flow injection ICP-MS. Can. J. Anal. Sci. Spectroscopy, 50, 14–22.Google Scholar
  3. Fowler, S. W., S. Ballestra, J. La Rosa and R. Fukai (1983): Vertical transport of particulate-associated plutonium and americium in the upper water column of the Northeast Pacific. Deep-Sea Res., 30, 1221–1233.CrossRefGoogle Scholar
  4. Hang, W., L. Zhu, W. Zhong and C. Mahan (2004): Separation of actinides at ultra-trace level from urine matrix using extraction chromatography—inductively coupled plasma sector field spectrometry. J. Anal. At. Spectrom., 19, 966–972.CrossRefGoogle Scholar
  5. Hayashi, N., J. Ishida, A. Yamato, M. Iwai and M. Kinoshita (1987): Determination of 239Pu, 240Pu and 241Am in environmental samples. J. Radioanal. Nucl. Chem., 115, 369–376.CrossRefGoogle Scholar
  6. Horwitz, E. P., M. L. Dietz, R. Chiarizia, H. Diamond, S. L. Maxwell, III and M. R. Nelson (1995): Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions. Anal. Chim. Acta, 310, 63–78.CrossRefGoogle Scholar
  7. Lee, S. H., J. Gastaud, P. P. Povinec, G. H. Hong, S. H. Kim, C. S. Chung, K. W. Lee and H. B. L. Pettersson (2003): Distribution of plutonium and americium in the marginal seas of the northwest Pacific Ocean. Deep-Sea Res. II, 50, 2727–2750.CrossRefGoogle Scholar
  8. Lee, S. H., P. P. Povinec, E. Wyse, M. K. Pham, G. H. Hong, C. S. Chung, S. H. Kim and H. J. Lee (2005): Distribution and inventories of 90Sr, 137Cs, 241Am and Pu isotopes in sediments of the Northwest Pacific Ocean. Mar. Geol., 216, 249–263.CrossRefGoogle Scholar
  9. Livingston, H. D. and R. F. Anderson (1983): Large particle transport of plutonium and other fallout radionuclides to the deep ocean. Nature, 303, 228–231.CrossRefGoogle Scholar
  10. Mellado, J., M. Llaurado and G. Rauret (2001): Determination of Pu, Am, U, Th and Sr in marine sediment by extraction chromatography. Anal. Chim. Acta, 443, 81–90.CrossRefGoogle Scholar
  11. Nakanishi, T., Y. Shiba, M. Muramatsu and M. A. Haque (1995): Estimation of mineral aerosol fluxes to the Pacific by using environmental plutonium as a tracer. p. 15–30. In Biogeochemical Processes and Ocean Flux in the Western Pacific, ed. by H. Sakai and Y. Nozaki, TERRAPUB, Tokyo.Google Scholar
  12. Perna, L., J. Jerntrom, L. Aldave de las Heras, J. de Pablo and M. Betti (2003): Sample cleanup by on-line chromatography for the determination of Am in sediments and soils by α-spectrometry. Anal. Chem., 75, 2292–2298.CrossRefGoogle Scholar
  13. Povinec, P. P., H. D. Livingston, S. Shima, M. Aoyama, J. Gastaud, I. Goroncy, K. Hirose, L. Huynh-Ngoc, Y. Ikeuchi, T. Ito, J. La Rosa, L. Liong Wee Kwong, S. H. Lee, H. Moriya, S. Mulsow, B. Oregioni, H. Pettersson and O. Togawa (2003): IAEA’97 expedition to the NW Pacific Ocean-results of oceanographic and radionuclide investigations of the water column. Deep-Sea Res. II, 50, 2607–2637.CrossRefGoogle Scholar
  14. Smith, J. N., K. M. Ellis, K. Naes, S. Dahle and D. Matishov (1995): Sedimentation and mixing rates of fallout radionuclides in Barents Sea sediments off Novaya Zemlya. Deep-Sea Res. II, 42, 1471–1493.CrossRefGoogle Scholar
  15. Truscott, J. B., P. Jones, B. E. Fairman and E. H. Evans (2001a): Determination of actinides in environmental and biological samples using high-performance chelation ion chromatography coupled to sector-field inductively coupled plasma sector field spectrometry. J. Chromatogr. A, 928, 91–98.CrossRefGoogle Scholar
  16. Truscott, J. B., P. Jones, B. E. Fairman and E. H. Evans (2001b): Determination of actinide elements at femtogram per gram levels in environmental samples by on-line solid phase extraction and sector-field inductively coupled plasma sector field spectrometry. Anal. Chim. Acta, 433, 245–253.CrossRefGoogle Scholar
  17. UNSCEAR (1993): Reports on ionizing radiation to General Assembly. United Nations Scientific Committee on the Effects of Atomic Radiations, New York.Google Scholar
  18. Varga, Z. (2007): Application of inductively coupled plasma sector field spectrometry for low-level environmental americium-241 analysis. Anal. Chim. Acta, 587, 165–169.CrossRefGoogle Scholar
  19. Varga, Z., G. Suranyi, N. Vajda and Z. Stefanka (2007a): Rapid sequential determination of americium and plutonium in sediment and soil samples by ICP-SFMS and alpha-spectrometry. Radiochim. Acta, 95, 81–87.CrossRefGoogle Scholar
  20. Varga, Z., G. Suranyi, N. Vajda and Z. Stefanka (2007b): Determination of plutonium and americium in environmental samples by inductively coupled plasma sector field spectrometry and alpha spectrometry. Microchem. J., 85, 39–45.CrossRefGoogle Scholar
  21. Warwick, P. E., I. W. Croudace and R. Carpenter (1996): Review of analytical techniques for the determination of Americium-241 in soil and sediments. Appl. Radiat. Isot., 47, 627–642.CrossRefGoogle Scholar
  22. Worldwide marine radioactivity studies (WOMARS) (2004): Radionuclide levels in oceans and seas. IAEA, Vienna, IAEA-TECDOC-1429.Google Scholar
  23. Yamada, M. and Y. Nagaya (2000): Vertical profiles, inventories, and activity ratios of 239+240Pu and 137Cs in sediments from Sagami Bay, western Northwest Pacific margin. J. Radioanal. Nucl. Chem., 246, 369–378.CrossRefGoogle Scholar
  24. Yamada, M., J. Zheng and Z. L. Wang (2007): 240Pu/239Pu atom ratios in seawater from Sagami Bay, western Northwest Pacific Ocean: source and scavenging. J. Environ. Radioact., 98, 274–284.CrossRefGoogle Scholar
  25. Yamamoto, M., K. Komura and M. Sakanoue (1981): A simple sequential separation method of Pu and Am by anion exchange and extraction chromatography. Radiochim. Acta, 29, 205–208.Google Scholar
  26. Yamato, A. (1982): An anion exchange method for the determination of americium-241 and plutonium in environmental and biological samples. J. Radioanal. Chem., 75, 265–273.CrossRefGoogle Scholar
  27. Zheng, J. and M. Yamada (2004): Sediment core record of global fallout and Bikini close-in fallout Pu in Sagami Bay, western northwest Pacific margin. Environ. Sci. Technol., 38, 3498–3504.CrossRefGoogle Scholar
  28. Zheng, J. and M. Yamada (2006): Inductively coupled plasma-sector field mass spectrometry with a high-efficiency sample introduction system for the determination of Pu isotopes in settling particles at femtogram levels. Talanta, 69, 1246–1253.CrossRefGoogle Scholar
  29. Zheng, J., M. Yamada, Z. L. Wang, T. Aono and M. Kusakabe (2004): Determination of plutonium and its isotopic ratio in marine sediment samples using quadruple ICP-MS with the shield torch system under normal plasma conditions. Anal. Bioanal. Chem., 379, 532–539.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Nakaminato Laboratory for Marine Radioecology, Environmental Radiation Effects Research GroupNational Institute of Radiological SciencesIbarakiJapan

Personalised recommendations