Journal of Oceanography

, Volume 64, Issue 4, pp 511–523 | Cite as

Optical properties of the red tide in Isahaya Bay, southwestern Japan: Influence of chlorophyll a concentration

  • Hiroaki Sasaki
  • Akihiko Tanaka
  • Mitsunori Iwataki
  • Yasuharu Touke
  • Eko Siswanto
  • Chun Knee Tan
  • Joji Ishizaka
Original Articles

Abstract

Remote sensing reflectance [Rrs(λ)] and absorption coefficients of red tides were measured in Isahaya Bay, southwestern Japan, to investigate differences in the optical properties of red tide and non-red tide waters. We defined colored areas of the sea surface, visualized from shipboard, as “red tides”. Peaks of the Rrs(λ) spectra of non-red tide waters were at 565 nm, while those of red tides shifted to longer wavelengths (589 nm). The spectral shape of Rrs(λ) was close to that of the reciprocal of the total absorption coefficient [1/a(λ)], implying that the Rrs(λ) peak is determined by absorption. Absorption coefficients of phytoplankton [aph(λ)], non-pigment particles and colored dissolved organic matter increased with increasing chlorophyll a concentration (Chl a), and those coefficients were correlated with Chl a for both red tide and non-red tide waters. Using these relationships between absorption coefficients and Chl a, variation in the spectrum of 1/a(λ) as a function of Chl a was calculated. The peak of 1/a(λ) shifted to longer wavelengths with increasing Chl a. Furthermore, the relative contribution of aph(λ) to the total absorption in red tide water was significantly higher than in non-red tide water in the wavelength range 550–600 nm, including the peak. Our results show that the variation of aph(λ) with Chl a dominates the behavior of the Rrs(λ) peak, and utilization of Rrs(λ) peaks at 589 and 565 nm may be useful to discriminate between red tide and non-red tide waters by remote sensing.

Keywords

Red tide remote sensing reflectance absorption coefficient chlorophyll Isahaya Bay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, Y. H., P. Shanmugam, J. H. Ryu and J. C. Jeong (2006): Satellite detection of harmful algal bloom occurrences in Korean waters. Harmful Algae, 5, 213–231.CrossRefGoogle Scholar
  2. Austin, R. W. (1974): The remote sensing of spectral radiance from below the ocean surface. p. 317–344. In Optical Aspects of Oceanography, ed. by N. G. Jerlov and E. S. Nielsen, Academic Press, London.Google Scholar
  3. Babin, M., D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky and N. Hoeffner (2003): Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe. J. Geophys. Res., 108, doi:10.1029/2001JC000882.Google Scholar
  4. Bricaud, A., M. Babin, A. Morel and H. Claustre (1995): Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization. J. Geophys. Res., 100, 13321–13332.CrossRefGoogle Scholar
  5. Bricaud, A., A. Morel, M. Babin, K. Allali and H. Claustre (1998): Variations of light absorption by susupended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models. J. Geophys. Res., 103, 31033–31044.CrossRefGoogle Scholar
  6. Bricaud, A., H. Claustre, J. Ras and K. Oubelkheir (2004): Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. J. Geophys. Res., 109, doi: 10.1029/2004JC002419.Google Scholar
  7. Bukata, R. P., J. H. Jerome, K. Y. Kondratyev and D. V. Pozdnyakov (1995): Optical Properties and Remote Sensing of Inland and Coastal Waters. CRC Press, Florida, 362 pp.Google Scholar
  8. Carder, K. L. and R. G. Steward (1985): A remote-sensing reflectance model of red-tide dinoflagellate off west Florida. Limnol. Oceanogr., 30, 286–298.Google Scholar
  9. Cleveland, J. S. and A. D. Weidemann (1993): Quantifying absorption by aquatic particles: a multiple scattering correction for glass fiber filters. Limnol. Oceanogr., 38, 1321–1327.Google Scholar
  10. Cota, G. F., W. G. Harrison, T. Platt, S. Sathyendranath and V. Stuart (2003): Bio-optical properties of the Labrador Sea. J. Geophys. Res., 108, doi:10.1029/2000JC000597.Google Scholar
  11. Craig, S. E., S. E. Lohrenz, Z. P. Lee, K. L. Mahoney, G. J. Kirkpatrick, O. M. Schofield and R. G. Steward (2006): Use of hyperspectral remote sensing reflectance for detection and assessment of the harmful alga, Karenia brevis. Appl. Opt., 21, 5414–5425.CrossRefGoogle Scholar
  12. Cullen, J. J., A. M. Ciotti, R. F. Davis and M. R. Lewis (1997): Optical detection and assessment of algal blooms. Limnol. Oceanogr., 42, 1223–1239.Google Scholar
  13. Dierssen, H. M., R. M. Kudela, J. P. Ryan and R. C. Zimmerman (2006): Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments. Limnol. Oceanogr., 51, 2646–2659.Google Scholar
  14. Duysens, L. N. M. (1956): The flattening of the absorption spectrum of suspensions, as compared to that of solutions. Biochim. Biophys. Acta, 19, 1–19.CrossRefGoogle Scholar
  15. Gitelson, A. (1992): The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens., 13, 3367–3373.CrossRefGoogle Scholar
  16. Gordon, H. R. and A. Morel (1983): Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery. Springer-Verlag, New York, 114 pp.Google Scholar
  17. Gordon, H. R., O. B. Brown and M. M. Jacobs (1975): Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean. Appl. Opt., 14, 417–427.CrossRefGoogle Scholar
  18. Gower, J. F. R. and G. A. Borstad (2004): On the potential of MODIS and MERIS for imaging chlorophyll fluorescence from space. Int. J. Remote Sens., 25, 1459–1464.CrossRefGoogle Scholar
  19. Gower, J., S. King, G. Borstad and L. Brown (2005): Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. Int. J. Remote Sens., 26, 2005–2012.CrossRefGoogle Scholar
  20. Hallegraeff, G. M. (1995): Harmful algal blooms: A global overview. p. 1–22. In Manual on Harmful Marine Microalgae, ed. by G. M. Hallegraeff, D. A. Anderson and A. D. Cembella, IOC Manual and Guides, 33, UNESCO.Google Scholar
  21. IOCCG (2000): Remote sensing of ocean colour in coastal, and other optically-complex, waters. In Reports of the International Ocean-Colour Coordinating Group, 3, ed. by S. Sathyendranath, IOCCG, Dartmouth, Canada.Google Scholar
  22. Ishizaka, J., Y. Kitaura, Y. Touke, H. Sasaki, A. Tanaka, H. Murakami, T. Suzuki, K. Matsuoka and H. Nakata (2006): Satellite detection of red tide in Ariake sound, 1998–2001. J. Oceanogr., 62, 37–45.CrossRefGoogle Scholar
  23. Kahru, M. and B. G. Mitchell (1998): Spectral reflectance and absorption of a massive red tide off southern California. J. Geophys. Res., 103, 21601–21609.CrossRefGoogle Scholar
  24. Kirk, J. T. O. (1975): A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters, II, Spherical cells. New Phytol., 75, 21–36.CrossRefGoogle Scholar
  25. Kirk, J. T. O. (1976): A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters, III, Cylindrical and spheroidal cells. New Phytol., 77, 341–358.CrossRefGoogle Scholar
  26. Kishino, M., M. Takahashi, N. Okami and S. Ichimura (1985): Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bul. Mar. Sci., 37, 634–642.Google Scholar
  27. Lee, Z. P., K. L. Carder, S. K. Hawes, R. G. Steward, T. G. Peacock and C. O. Davis (1994): Modeling for interpretation of hyperspectral remote-sensing reflectance. Appl. Opt., 33, 5721–5732.Google Scholar
  28. Mobley, C. D. (1994): Light and Water: Radiative Transfer in Natural Waters. Academic Press, 592 pp.Google Scholar
  29. Morel, A. (1988): Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J. Geophys. Res., 93, 10749–10768.CrossRefGoogle Scholar
  30. Morel, A. and A. Bricaud (1981): Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res., 28, 1375–1393.CrossRefGoogle Scholar
  31. Morel, A. and B. Gentili (1993): Diffuse reflectance of oceanic waters. II. bidirectional aspects. Appl. Opt., 32, 6864–6879.Google Scholar
  32. Morel, A. and L. Prieur (1977): Analysis of variations in ocean color. Limnol. Oceanogr., 22, 709–722.Google Scholar
  33. Mueller, J. L., G. S. Fargion and C. R. McClain (eds.) (2002): Ocean optics protocols for satellite ocean color sensor validation, IV, NASA Tech. Memo. 2003-211621, NASA Goddard Space Flight Center, Greenbelt, Maryland, 76 pp.Google Scholar
  34. Okamura, K., K. Tanaka, K. Kimoto and Y. Kiyomoto (2006): Distribution of organic matter and organic carbon stable isotope ratios in the surface sediments of inner Ariake Bay and Isahaya Bay, Japan. Umi no Kenkyu, 15, 201–206 (in Japanese with English abstract).Google Scholar
  35. Prieur, L. and S. Sathyendranath (1981): An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials. Limnol. Oceanogr., 26, 671–689.CrossRefGoogle Scholar
  36. Reynolds, R. A., D. Stramski and B. G. Mitchell (2001): A chlorophyll-dependent semianalytical reflectance model derived from field measurements of absorption and backscattering coefficients within the Southern Ocean. J. Geophys. Res., 106, 7125–7138.CrossRefGoogle Scholar
  37. Sasaki, H., T. Miyamura, S. Saitoh and J. Ishizaka (2005): Seasonal variation of absorption by particles and colored dissolved organic matter (CDOM) in Funka Bay, southwestern Hokkaido, Japan. Est. Coast. Shelf Sci., 64, 447–458.CrossRefGoogle Scholar
  38. Smith, R. C. and K. S. Baker (1981): Optical properties of the clearest natural waters (200–800 nm). Appl. Opt., 20, 177–184.Google Scholar
  39. Suzuki, R. and T. Ishimaru (1990): An improved method for the determination of phytoplankton chlorophyll using N,N-dimethylformamide. J. Oceanogr. Soc. Japan, 46, 190–194.CrossRefGoogle Scholar
  40. Wang, J., G. F. Cota and D. A. Ruble (2005): Absorption and backscattering in the Beaufort and Chukchi Seas. J. Geophys. Res., 110, doi:10.1029/2002JC001653.Google Scholar
  41. Yentsch, C. S. (1989): Monitoring algal blooms, the use of satellites and other remote sensing devices. p. 181–184. In Red Tides: Biology, Environmental Science, and Toxicology, ed. by T. Okachi, D. M. Anderson and T. Nemoto, Proc. 1st Int. Symp. on Red Tides, Elsevier, New York.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Hiroaki Sasaki
    • 1
  • Akihiko Tanaka
    • 2
  • Mitsunori Iwataki
    • 3
  • Yasuharu Touke
    • 4
  • Eko Siswanto
    • 5
  • Chun Knee Tan
    • 6
  • Joji Ishizaka
    • 7
  1. 1.Seikai National Fisheries Research InstituteFisheries Research AgencyNagasakiJapan
  2. 2.School of Marine Science and TechnologyTokai UniversityShizuokaJapan
  3. 3.Institute for East China Sea ResearchNagasaki UniversityNagasakiJapan
  4. 4.Graduate School of Science and TechnologyNagasaki UniversityNagasakiJapan
  5. 5.Hydrospheric Atmospheric Research CenterNagoya UniversityAichiJapan
  6. 6.Global Environment Information CentreUnited Nations UniversityTokyoJapan
  7. 7.Faculty of FisheriesNagasaki UniversityNagasakiJapan

Personalised recommendations