Advertisement

Journal of Oceanography

, Volume 64, Issue 4, pp 495–509 | Cite as

Inertial oscillations as deep ocean response to hurricanes

  • Eugene G. Morozov
  • Manuel G. VelardeEmail author
Original Articles

Abstract

We discuss the deep ocean response to passing hurricanes (aka typhoons), which are considered as generators of near-inertial, internal waves. The analysis of data collected in the northwestern parts of the Pacific and Atlantic oceans in the hurricane season permit us to assess the deep ocean response to such a strong atmospheric forcing. A large number of moorings (more than 100) in the northwestern Pacific have allowed us to characterize the spatial features of the oceanic response to typhoons and the variable downward velocity of near-inertial wave propagation. The velocity of their downward propagation varies in the range 1–10 m/hour. It is higher in the regions of low stratification and high anticyclonic vorticity. The inertial oscillations generated by a hurricane last for 10–12 days. The mean anticyclonic vorticity in the region increases the effective frequency of inertial oscillations by 0.001–0.004 cyc/hour.

Keywords

Typhoon hurricane inertial oscillations near-inertial internal waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M. and I. A. Stegun (eds.) (1972): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Sect. 10.4). Dover, New York.Google Scholar
  2. Alford, M. H. (2001): Internal swell generation: the spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 2359–2368.CrossRefGoogle Scholar
  3. Balmforth, N. J., S. G. Llewellyn Smith and W. R. Young (1998): Enhanced dispersion of near-inertial waves in an idealized geostrophic flow. J. Mar. Res., 56, 1–40.CrossRefGoogle Scholar
  4. Blackman, R. B. and J. W. Tukey (1958): The Measurements of Power Spectra from the Point of View of Communications Engineering. Dover, New York.Google Scholar
  5. Brink, K. H. (1989): Observations of the response of thermocline currents to a hurricane. J. Phys. Oceanogr., 19, 1017–1022.CrossRefGoogle Scholar
  6. Brooks, D. A. (1983): The wake of hurricane Allen in the western Gulf of Mexico. J. Phys. Oceanogr., 13, 117–129.CrossRefGoogle Scholar
  7. Church, J. A., T. M. Joyce and J. M. Price (1989): Current and density observations across the wake of hurricane Gay. J. Phys. Oceanogr., 19, 259–265.CrossRefGoogle Scholar
  8. D’Asaro, E. A. and H. Perkins (1984): A near-inertial wave spectrum for the Sargasso Sea in late summer. J. Phys. Oceanogr., 14, 489–505.CrossRefGoogle Scholar
  9. Fu, L.-L. (1981): Observations and models of internal waves in the deep ocean. Rev. Geophys. Space Phys., 19, 141–170.CrossRefGoogle Scholar
  10. Garrett, C. (2001): What is the “near-inertial” band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr., 31, 962–971.CrossRefGoogle Scholar
  11. Gill, A. E. (1984): On the behavior of internal waves in the wakes of storms. J. Phys. Oceanogr., 14, 1129–1151.CrossRefGoogle Scholar
  12. Healey, D. and P. H. LeBlond (1969): Internal wave propagation normal to a geostrophic current. J. Mar. Res., 27, 85–98.Google Scholar
  13. Klein, P., S. Llewellyn Smith and G. Lapeyre (2004): Organization of near-inertial energy by an eddy field. Quart. J. Roy. Meteor. Soc., 130, issue 598, 1153–1166.CrossRefGoogle Scholar
  14. Kundu, P. K. (1984): Generation of coastal inertial oscillations by time-varying wind. J. Phys. Oceanogr., 14, 1901–1913.CrossRefGoogle Scholar
  15. Kunze, E. (1985): Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15, 544–565.CrossRefGoogle Scholar
  16. Kunze, E. and E. Boss (1998): A model for vortex-trapped internal waves. J. Phys. Oceanogr., 28, 2104–2115.CrossRefGoogle Scholar
  17. Lozovatsky, I. D., E. G. Morozov and H. J. S. Fernando (2003): Spatial decay of energy density of tidal internal waves. J. Geophys. Res., 108(C6), 3201–3207.CrossRefGoogle Scholar
  18. Maeda, A., K. Uejima, T. Yamashiro, M. Sakurai, H. Ichikawa, M. Chaen, K. Taira and S. Mizuno (1996): Near-inertial motion excited by wind change in a margin of the thyphoon 9019. J. Oceanogr., 52, 375–388.CrossRefGoogle Scholar
  19. Mao, Q., S. W. Chang and R. L. Pfeffer (2000): Influence of large-scale initial oceanic mixed layer depth on tropical cyclones. Mon. Wea. Rev., 128, 4058–4070.CrossRefGoogle Scholar
  20. Maximenko, N. A., M. N. Koshlyakov, Yu. A. Ivanov, M. I. Yaremchuk and G. G. Panteleev (2001): Hydrophysical experiment “Megapolygon-87” in the northwestern Pacific Subarctic frontal zone. J. Geophys. Res., 106, 14143–14163.CrossRefGoogle Scholar
  21. Mooers, C. N. K. (1975): Several effects of a baroclinic current on the cross-stream propagation of inertial-inertial waves. Geophys. Fluid Dyn., 6, 245–275.CrossRefGoogle Scholar
  22. Morozov, E. G., K. Trulsen, M. G. Velarde and V. I. Vlasenko (2002): Internal tides in the Strait of Gibraltar. J. Phys. Oceanogr., 32, 3193–3206.CrossRefGoogle Scholar
  23. Morozov, E. G., G. Parrilla-Barrera, M. G. Velarde and A. D. Scherbinin (2003): The straits of Gibraltar and Kara Gates: a comparison of internal tides. Oceanol. Acta, 26, 231–241.CrossRefGoogle Scholar
  24. Munk, W. (1980): Internal wave spectra at the buoyant and inertial frequencies. J. Phys. Oceanogr., 10, 1718–1728.CrossRefGoogle Scholar
  25. Munk, W. and N. Phillips (1968): Coherence and band structure of inertial motion in the sea. Rev. Geophys., 6, 447–472.CrossRefGoogle Scholar
  26. Nilsson, J. (1995): Energy flux from traveling hurricanes to the internal wave field. J. Phys. Oceanogr., 25, 558–573.CrossRefGoogle Scholar
  27. Parks, T. W. and C. S. Burrus (1987): Digital Filter Design (Sect. 7.3.3). Wiley, New York.Google Scholar
  28. Pedlosky, J. (1987): Geophysical Fluid Dynamics (Sect. 2.7). Springer Verlag, New York.CrossRefGoogle Scholar
  29. Pinkel, R. (1984): Doppler sonar observations of internal waves: the wavenumber frequency spectrum. J. Phys. Oceanogr., 14, 1249–1270.CrossRefGoogle Scholar
  30. Pollard, R. T. (1970): On the generation by winds of inertial waves in the ocean. Deep-Sea Res., 17, 795–812.Google Scholar
  31. Pollard, R. T. (1980): Properties of near-surface inertial oscillations. J. Phys. Oceanogr., 10, 385–398.CrossRefGoogle Scholar
  32. Price, J. F. (1981): Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175.CrossRefGoogle Scholar
  33. Price, J. F., T. B. Sanford and G. Z. Forristal (1994): Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233–260.CrossRefGoogle Scholar
  34. Qi, H., R. A. de Szoeke, C. A. Paulson and C. C. Eriksen (1995): The structure of near-inertial waves during ocean storms. J. Phys. Oceanogr., 25, 2853–2871.CrossRefGoogle Scholar
  35. Sanford, T. B., P. G. Black, J. R. Haustein, J. W. Feeney, G. Z. Forristall and J. F. Price (1987): Ocean response to a hurricane, Part. 1, Observations. J. Phys. Oceanogr., 17, 2065–2083.CrossRefGoogle Scholar
  36. Shay, L. K. and R. L. Elsberry (1987): Near-inertial ocean current response to hurricane Frederic. J. Phys. Oceanogr., 17, 1249–1269.CrossRefGoogle Scholar
  37. Shay, L. K., S. W. Chang and R. L. Elsberry (1990): Free surface effects on the near-inertial ocean response to a hurricane. J. Phys. Oceanogr., 20, 1405–1424.CrossRefGoogle Scholar
  38. Shay, L. K., G. J. Goni and P. G. Black (2000): Effects of a warm oceanic feature on hurricane Opal. Mon. Wea. Rev., 128, 1366–1383.CrossRefGoogle Scholar
  39. Taira, K., S. Kitagawa, H. Otobe and A. Tomio (1993): Observation of temperature and velocity from a surface buoy moored in the Shikoku Basin (OMLET-88)—an oceanic response to a typhoon. J. Oceanogr., 49, 397–406.CrossRefGoogle Scholar
  40. Treguier, A. M. and P. Klein (1994): Instability of wind-forced inertial oscillations. J. Fluid Mech., 275, 323–349.CrossRefGoogle Scholar
  41. van Meurs, P. (1998): Interactions between near-inertial mixed layer currents and the mesoscale: The importance of spatial variabilities in the vorticity field. J. Phys. Oceanogr., 28, 1363–1368.CrossRefGoogle Scholar
  42. Young, W. R. and M. Ben Jelloul (1997): Propagation of near-inertial oscillations through a geostrophic flow. J. Mar. Res., 55, 735–766.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  2. 2.Instituto PluridisciplinarMadridSpain

Personalised recommendations