Advertisement

Journal of Oceanography

, Volume 64, Issue 4, pp 479–494 | Cite as

First and second baroclinic mode responses of the tropical Indian Ocean to interannual equatorial wind anomalies

  • Vinu ValsalaEmail author
Original Articles

Abstract

The combined and individual responses of the first and second baroclinic mode dynamics of the tropical Indian Ocean to the well-known Indian Ocean Dipole mode (IOD) wind anomalies are investigated. The IOD forced first baroclinic Rossby waves arrive at the western boundary in three months, while the reflected component from the eastern boundary with opposite phase arrives in five to six months, both carry input energy to the west. The inclusion of the second baroclinic mode slows down the wave propagation by mode coupling and stretches the energy spectrum to a relatively longer time scale. The total energy exists in the equatorial wave guide for at least five months from the forcing, as much as 10% of that of the atmospheric input, which mainly dissipates at the western boundary. The individual responses of the ocean to IOD interannual wind anomaly show that the significant modes of oceanic anomalies are confined to a wave guide of 10° on either side of the equator.

Keywords

Indian Ocean Dipole Mode tropical Indian Ocean Kelvin waves Rossby waves first baroclinic mode responses second baroclinic mode responses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashok, K., Z. Guan and T. Yamagata (2001): Impact of the Indian Ocean Dipol on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett., 28, 4499–4502.CrossRefGoogle Scholar
  2. Ashok, K., Z. Guan, N. H. Saji and T. Yamagata (2004): Individual and combined influence of ENSO and the Indian Ocean Dipole on the Indian summer monsoon. J. Climate, 17, 3141–3155.CrossRefGoogle Scholar
  3. Behera, S. K., R. Krishnan and T. Yamagata (1999): Unusual ocean-atmosphere conditions in the tropical Indian Ocean during 1994. Geophys. Res. Lett., 26, 3001–3004.CrossRefGoogle Scholar
  4. Gadgil, S., P. N. Vinayachandran, P. A. Francis and S. Gadgil (2004): Extremes of the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean oscillation. Geophys. Res. Lett., 31, doi: 10.1029/2004GL019733.Google Scholar
  5. Gill, A. E. (1982): Atmosphere-Ocean and Dynamics. Vol. 30, International Geophysics Series, 662 pp.Google Scholar
  6. McCreary, J. P. (1976): Eastern tropical ocean response to changing wind systems: with application to El Niño. J. Phys. Oceanogr., 6, 632–646.CrossRefGoogle Scholar
  7. Murtugudde, R. and A. J. Busalacchi (1999): Interannual variability of the dynamics and thermodynamics of the tropical Indian Ocean. J. Climate, 12, 2300–2326.CrossRefGoogle Scholar
  8. Murtugudde, R., A. J. Busalacchi and J. Beauchamp (1998): Seasonal to interannual effects of the Indonesian throughflow on the tropical Indo-Pacific basin. J. Geophys. Res., 103, 21425–21441.CrossRefGoogle Scholar
  9. Philander, S. G., T. Yamagata and R. C. Pacanowski (1984): Unstable air-sea interactions in the tropics. J. Atmos. Sci., 41, 604–613.CrossRefGoogle Scholar
  10. Potemra, J. T. (2000): Contribution of equatorial Pacific winds to southern tropical Indian Ocean Rossby waves. J. Geophys. Res., 106, 2407–2422.CrossRefGoogle Scholar
  11. Saji, N. H., B. N. Goswami, P. N. Vinayachandran and T. Yamagata (1999): A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.Google Scholar
  12. Sprintall, J., A. L. Gordon, R. Murtugudde and R. D. Susanto (2000): A semi-annual Indian Ocean forced Kelvin wave observed in the Indonesian seas in May 1997. J. Geophys. Res., 105, 17217–17230.CrossRefGoogle Scholar
  13. Valsala, K. V. and M. Ikeda (2005): An extreme drought event in the 2002 summer monsoon rainfall and its mechanism proved with a moisture flux analysis. Scientific Online Letters on the Atmosphere, 1, 173–176.Google Scholar
  14. Valsala, K. V. and M. Ikeda (2007): Pathways and effects of the Indonesian throughflow water in the Indian Ocean using particle trajectory and tracers in an OGCM. J. Climate, doi:10.1175/JCLI4167.1.Google Scholar
  15. Vinayachandran, P. N., S. Izuka and T. Yamagata (2002): Indian Ocean dipole mode events in an ocean general circulation model. Deep-Sea Res., 49, 1573–1596.Google Scholar
  16. White, W. B. (2000): Coupled Rossby waves in the Indian Ocean on interannual timescales. J. Phys. Oceanogr., 30, 2972–2998.CrossRefGoogle Scholar
  17. White, W. B. and J. L. Annis (2005): Diagnosing heat and vorticity budgets of annual coupled Rossby waves. J. Phys. Oceanogr., 35, 1173–1189.CrossRefGoogle Scholar
  18. Wijffels, S. and G. Meyers (2004): An intersection of oceanic waveguides: Variability in the Indonesian throughflow region. J. Phys. Oceanogr., 34, 1232–1253.CrossRefGoogle Scholar
  19. Xie, S. P., H. Annamalai, F. A. Schott and J. P. McCreary (2002): Structure and mechanism of southern Indian Ocean climate variability. J. Climate, 15, 864–878.CrossRefGoogle Scholar
  20. Yamagata, T., K. Mizuno and Y. Masumoto (1996): Seasonal variations in the equatorial Indian Ocean and their impact on the Lambok throughflow. J. Geophys. Res., 101, 12465–12473.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Center for Global Environmental ResearchNational Institute for Environmental StudiesTsukubaJapan

Personalised recommendations