Journal of Oceanography

, Volume 63, Issue 4, pp 695–709 | Cite as

ENSO related variations in biogeochemistry of AA and HA in settling particles along the equatorial Pacific Ocean

  • Lallan P. GuptaEmail author
  • Hodaka Kawahata
Original Articles


Four year-long time-series sediment trap experiments were conducted along the equatorial Pacific Ocean in order to understand the biogeochemistry of particulate organic matter (POM) on the basis of amino acid (AA) and hexosamine (HA) compositions of the settling particles. Total mass flux in the study area varied over 4 orders of magnitude without a common seasonality among all trap sites. Planktonic blooms were apparent in terms of total mass and AA fluxes at the easternmost end of the Niño-4 region. AA fluxes closely followed the total mass flux profiles, suggesting that increased particle flux delivered a greater amount of labile OM to the deep ocean. A labile OM index (LI)-based classification showed that during the El Niño conditions in 2002, the eastern side of the equatorial Pacific transported relatively more labile OM than the western equatorial Pacific. An overall change in AA and HA composition of settling particles could be revealed with the help of discriminant analysis, suggesting that settling particles during El Niño were compositionally different from those settling during La Niña condition in the equatorial Pacific.


Amino acid hexosamine labile organic matter degradation index settling particle particle flux ENSO Pacific Ocean 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alldredge, A. L. and M. W. Silver (1988): Characteristics, dynamics and significance of marine snow. Prog. Oceanogr., 20, 41–82.CrossRefGoogle Scholar
  2. Benner, R. and K. Kaiser (2003): Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter. Limnol. Oceanogr., 48(1), 118–128.CrossRefGoogle Scholar
  3. Braven, J., E. I. Butler, J. Chapman and R. Evens (1995): Changes in dissolved free amino acid composition in sea water associated with phytoplankton populations. Sci Total Environ., 172(2–3), 145–150.CrossRefGoogle Scholar
  4. Brucet, S., D. Boix, R. López-Flores, A. Badosa and X. D. Quintana (2005): Ontogenic changes of amino acid composition in planktonic crustacean species. Mar. Biol., 148(1), 131–139.CrossRefGoogle Scholar
  5. Buesseler, K. O. (1991): Do upper-ocean sediment traps provide an accurate record of particle flux? Nature, 353, 420–423.CrossRefGoogle Scholar
  6. Capone, D. G., J. P. Zehr, H. Paerl, B. Bergman and E. J. Carpenter (1997): Trichodesmium, a globally significant marine cyanobacterium. Science, 276(5316), 1221–1229.CrossRefGoogle Scholar
  7. Cowie, G. L. and J. I. Hedges (1994): Biochemical indicators of diagenetic alteration in natural organic matter mixtures. Nature, 369, 304–307.CrossRefGoogle Scholar
  8. Dandonneau, Y., P.-Y. Deschamps, J.-M. Nicolas, H. Loisel, J. Blanchot, Y. Montel, F. Thieuleux and G. Becu (2004): Seasonal and interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, equatorial Pacific and South Pacific. Deep-Sea Res. II, 51(1–3), 303–318.CrossRefGoogle Scholar
  9. Dauwe, B. and J. J. Middelburg (1998): Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments. Limnol. Oceanogr., 43(5), 782–798.CrossRefGoogle Scholar
  10. Degens, E. T. and V. Ittekkot (1984): A new look at clay-organic interaction. Mitteilungen aus dem Geologisches Palaeontologisches Institut der Universitaet Hamburg. SCOPE/UNEP sonderband., 56, 229–248.Google Scholar
  11. Dunne, J. P., J. W. Murray, M. Rodier and D. A. Hansell (2000): Export flux in the western and central equatorial Pacific: zonal and temporal variability. Deep-Sea Res., 47, 901–936.CrossRefGoogle Scholar
  12. Dymond, J. and R. Collier (1988): Biogenic particle fluxes in the equatorial Pacific: Evidence for both high and low productivity during the 1982–1983 El-Niño. Global Biogeochem. Cycles, 2, 129–137.CrossRefGoogle Scholar
  13. Field, C. B., M. J. Behrenfeld, J. T. Randerson and P. Falkowski (1998): Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281, 237–240.CrossRefGoogle Scholar
  14. Fleisher, M. Q. and R. F. Anderson (2003): Assessing the collection efficiency of Ross Sea sediment traps using 230Th and 231Pa. Deep-Sea Res. II, 50(3–4), 693–712.CrossRefGoogle Scholar
  15. Garrett, D. (2000): Climate Prediction Centre, NOAA. WWW page: http// analysis_monitoring/bulletin/figt2.gifGoogle Scholar
  16. Glantz, M. H. (1996): Currents of Change: El Niño’s Impact on Climate and Society. University Press, Cambridge, 194 pp.Google Scholar
  17. Gordon, A. L. and R. A. Fine (1996): Pathways of water between the Pacific and Indian oceans in the Indonesian seas. Nature, 379, 146–149.CrossRefGoogle Scholar
  18. Guieu, C., M. Roy-Barman, N. Leblond, C. Jeandel, M. Souhaut, B. Le Cann, A. Dufour and C. Bournot (2005): Vertical particle flux in the northeast Atlantic Ocean (POMME experiment). J. Geophys. Res., 110(C07S18), doi:10.1029/2004JC002672.Google Scholar
  19. Gupta, L. P. and H. Kawahata (2000): Amino acid and hexosamine compositions and flux of sinking particulate matter into the equatorial Pacific at 175°E longitude. Deep-Sea Res., 47(10), 1937–1960.CrossRefGoogle Scholar
  20. Gupta, L. P. and H. Kawahata (2002): Impact of ENSO variability on the flux and composition of sinking POM in the western equatorial Pacific Ocean: Amino acids and hexosamines. Deep-Sea Res. II, 49(13–14), 2769–2782.CrossRefGoogle Scholar
  21. Gupta, L. P. and H. Kawahata (2003a): Biogeochemical processes and labile composition of settling particulate organic matter in the south-west Pacific Ocean. Mar. Freshwat. Res., 54, 259–270.CrossRefGoogle Scholar
  22. Gupta, L. P. and H. Kawahata (2003b): Vertical and latitudinal variations in amino acid fluxes and compositions of settling particles along 175°E in the North Pacific Ocean. Tellus, 55B, 445–455.Google Scholar
  23. Gupta, L. P. and H. Kawahata (2003c): Amino acids and hexosamines in the Hess Rise core during the past 220,000 years. Quat. Res., 60(3), 394–403.CrossRefGoogle Scholar
  24. Gupta, L. P., V. Subramanian and V. Ittekkot (1997): Biogeochemistry of particulate matter transported by the Godavari River, India. Biogeochem., 38(2), 103–128.CrossRefGoogle Scholar
  25. Gupta, L. P., A. Suzuki and H. Kawahata (2007): Endolithic aspartic acid as a proxy of fluctuations in coral growth. J. Geophys. Res.-Biogeosci., 112(G01001), doi:10.1029/2006JG000242.Google Scholar
  26. Haake, B., V. Ittekkot, V. Ramaswamy, R. R. Nair and S. Honjo (1992): Fluxes of amino acids and hexosamines to the deep Arabian Sea. Mar. Chem., 40, 291–314.CrossRefGoogle Scholar
  27. Hansell, D. A. and J. A. Newton (1994): Design and evaluation of a “swimmer” segregating particle interceptor trap. Limnol. Oceanogr., 39, 1487–1495.CrossRefGoogle Scholar
  28. Hansell, D. A., N. R. Bates and C. A. Carlson (1997): Predominance of vertical loss of carbon from surface waters of the equatorial Pacific Ocean. Nature, 386, 59–61.CrossRefGoogle Scholar
  29. Hashimoto, S., Y. Maita, M. Yanada and K. Takahashi (1998): Annual and seasonal variations of amino acid and hexosamine fluxes in the deep Bering Sea and the deep central Subarctic Pacific. Deep-Sea Res., 45, 1029–1051.CrossRefGoogle Scholar
  30. Henrichs, S. M. and J. W. Farrinton (1987): Early diagenesis of amino acids and organic matter in two coastal marine sediments. Geochim. Cosmochim. Acta, 51, 1–15.CrossRefGoogle Scholar
  31. Hernandez-Trujillo, S. (1999): Variability of community structure of Copepoda related to El Niño 1982–83 and 1987–88 along the west coast of Baja California Peninsula, Mexico. Fish. Oceanogr., 8(4), 284–295.CrossRefGoogle Scholar
  32. Honjo, S. (1980): Material fluxes and modes of sedimentation in the mesopelagic and bathypelagic zones. J. Mar. Res., 38, 53–97.Google Scholar
  33. Honjo, S. and S. Manganini (1993): Annual biogenic particle fluxes to the interior of the North Atlantic Ocean; studied at 34°N 21°W and 48°N 21°W. Deep-Sea Res., 40(1/2), 587–607.Google Scholar
  34. Honjo, S., J. Dymond, R. Collier and S. J. Manganini (1995): Export production of particles to the interior of the equatorial Pacific Ocean during the 1992 EqPac experiment. Deep-Sea Res. II, 42, 831–870.CrossRefGoogle Scholar
  35. Ittekkot, V., E. T. Degens and S. Honjo (1984a): Seasonality in the fluxes of sugars, amino acids, and amino sugars to the deep ocean: Panama Basin. Deep-Sea Res., 31, 1071–1083.CrossRefGoogle Scholar
  36. Ittekkot, V., W. G. Deuser and E. T. Degens (1984b): Seasonality in the fluxes of sugars, amino acids, and amino sugars to the deep ocean: Sargasso Sea. Deep-Sea Res., 31, 1057–1069.CrossRefGoogle Scholar
  37. Jennerjahn, T. C. and V. Ittekkot (1997): Organic matter in sediments in the mangrove areas and adjacent continental margins of Brazil: I. Amino acids and hexosamines. Oceanol. Acta, 20(2), 359–369.Google Scholar
  38. JMA—Japan Meteorological Agency, Marine Department (1991): Climate Charts of Sea Surface Temperatures of the Western North Pacific and the Global Ocean. 51 pp.Google Scholar
  39. Johnson, G. C., M. J. McPhaden and E. Firing (2001): Equatorial Pacific Ocean horizontal velocity, divergence, and upwelling. J. Phys. Oceanogr., 31, 839–849.CrossRefGoogle Scholar
  40. Kalachova, G. S., A. A. Kolmakova, M. I. Gladyshev, E. S. Kravchuk and E. A. Ivanova (2004): Seasonal dynamics of amino acids in two small Siberian reservoirs dominated by prokaryotic and eukaryotic phytoplankton. Aquatic Ecol., 38(1), 3–15.CrossRefGoogle Scholar
  41. Kandler, O. (1979): Zellwandstrukturen bei Methan-Bakterien. Naturwiss., 66, 95–105.CrossRefGoogle Scholar
  42. Kawahata, H., A. Suzuki and H. Ohta (1998): Sinking particles between the equatorial and subarctic regions (0°N–46°N) in the central Pacific. Geochem. J., 32, 125–133.CrossRefGoogle Scholar
  43. Kawahata, H., A. Suzuki and H. Ohta (2000): Export fluxes in the Western Pacific Warm Pool. Deep-Sea Res., 47, 2061–2091.CrossRefGoogle Scholar
  44. Kobayashi, F. and K. Takahashi (2002): Distribution of diatoms along the equatorial transect in the western and central Pacific during the 1999 La Niña conditions. Deep-Sea Res. II, 49, 2801–2821.CrossRefGoogle Scholar
  45. Le Borgne, R. and M. Rodier (1997) Net zooplankton and the biological pump: a comparison between the oligotrophic and mesotrophic equatorial Pacific. Deep-Sea Res. II, 44, 2003–2023.CrossRefGoogle Scholar
  46. Le Borgne, R., R. T. Barber, T. Delcroix, H. Y. Inoue, D. J. Mackey and M. Rodier (2002): Pacific warm pool and divergence: temporal and zonal variations on the equator and their effects on the biological pump. Deep-Sea Res. II, 49(13–14), 2471–2512.CrossRefGoogle Scholar
  47. Lee, C. and C. Cronin (1982): The vertical flux of particulate organic nitrogen in the sea: decomposition of amino acids in the Peru upwelling area and the equatorial Atlantic. J. Mar. Res., 40, 227–251.Google Scholar
  48. Lee, C. and C. Cronin (1984): Particulate amino acids in the sea: Effects of primary productivity and biological decomposition. J. Mar. Res., 42, 1075–1097.CrossRefGoogle Scholar
  49. Lee, C., S. G. Wakeham and J. I. Hedges (2000): Composition and flux of particulate amino acids and chloropigments in equatorial Pacific seawater and sediments. Deep-Sea Res., 47, 1535–1568.CrossRefGoogle Scholar
  50. Liu, D., G. A. Fryxell and I. Kaczmarska (1996): El Niño (1992) in the equatorial Pacific: low biomass with a few dominating species in the microphytoplankton. J. Plankton Res., 18(7), 1167–1184.CrossRefGoogle Scholar
  51. Lundgreen, U. and J. C. Duinker (1998): Seasonal variability of amino acid flux and composition of particulate organic matter in the Northeast Atlantic at 47°N–20°W. Mar. Chem., 62, 307–323.CrossRefGoogle Scholar
  52. Mackey, D. J., J. Parslow, F. B. Griffiths, H. W. Higgins and B. Tilbrook (1997): Phytoplankton productivity and the carbon cycle in the western Equatorial Pacific under El Niño and non-El Niño conditions. Deep-Sea Res. II, 44(9–10), 1951–1978.CrossRefGoogle Scholar
  53. Matsumoto, K., K. Furuya and T. Kawano (2004): Association of picophytoplankton distribution with ENSO events in the equatorial Pacific between 145°E and 160°W. Deep-Sea Res., 51, 1851–1871.CrossRefGoogle Scholar
  54. Müller, P. J., E. Suess and C. A. Ungerer (1986): Amino acids and amino sugars of surface particulate and sediment trap material from waters of the Scotia Sea. Deep-Sea Res., 33, 819–838.CrossRefGoogle Scholar
  55. Norusis, M. J. (1994): SPSS Professional Statistics 6.1. SPSS Inc., Chicago, 385 pp.Google Scholar
  56. Petersson, M. and S. Floderus (2001): Use of amino acid composition to investigate settling and resuspension of a spring bloom in the southern Skagerrak. Limnol. Oceanogr., 46(5), 1111–1120.CrossRefGoogle Scholar
  57. Reynolds, R. W. and T. M. Smith (1994): Improved global sea surface temperature analyses. J. Climate, 7, 929–948.CrossRefGoogle Scholar
  58. Rodier, M. and R. Le Borgne (1997): Export flux of particles at the equator in the western and central Pacific Ocean. Deep-Sea Res. II, 44(9–10), 2085–2113.CrossRefGoogle Scholar
  59. Rodier, M., G. Eldin and R. Le Borgne (2000): The western boundary of the equatorial Pacific upwelling: some consequences of climatic variability on hydrological and planktonic properties. J. Oceanogr., 56, 463–471.CrossRefGoogle Scholar
  60. Roman, M. R., H. G. Dam, R. Le Borgne and X. Zhang (2002): Latitudinal comparisons of equatorial Pacific zooplankton. Deep-Sea Res. II, 49(13–14), 2695–2711.CrossRefGoogle Scholar
  61. Rutgers van der Loeff, M. M., R. Meyer, B. Rudels and E. Rachor (2002): Resuspension and particle transport in the benthic nepheloid layer in and near Fram Strait in relation to faunal abundances and 234Th depletion. Deep-Sea Res., 49(11), 1941–1958.CrossRefGoogle Scholar
  62. Ryan, J. P., P. S. Polito, P. G. Strutton and F. P. Chavez (2002): Unusual large-scale phytoplankton blooms in the equatorial Pacific. Prog. Oceanogr., 55(3–4), 263–285.CrossRefGoogle Scholar
  63. Schäfer, P., V. Ittekkot, G. Gravenhorst, R. Langel and A. Reineking (1998): Variations of 15N-values and hydrolysable amino acids in settling particles in the ocean. Isotopes Env. Health Studies, 34, 191–199.CrossRefGoogle Scholar
  64. Suthhof, A., T. C. Jennerjahn, P. Schäfer and V. Ittekkot (2000): Nature of organic matter in surface sediments from the Pakistan continental margin and the deep Arabian Sea: amino acids. Deep-Sea Res. II, 47, 329–351.CrossRefGoogle Scholar
  65. Unger, D., V. Ittekkot, P. Schäfer and J. Tiemann (2005): Biogeochemistry of particulate organic matter from the Bay of Bengal as discernible from hydrolysable neutral carbohydrates and amino acids. Mar. Chem., 96, 155–184.CrossRefGoogle Scholar
  66. Volk, T. and M. I. Hoffert (1985): Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. p. 99–110. In The Carbon Cycle and Atmospheric CO 2: Natural Variations Archean to Present, ed. by E. T. Sundquist and W. S. Broecker, American Geophysical Union, Washington, D.C.Google Scholar
  67. Wakeham, S. G., C. Lee, J. W. Farrington and R. B. Gagosian (1984): Biogeochemistry of particulate organic matter in the oceans: results from sediment trap experiments. Deep-Sea Res., 31(5), 509–528.CrossRefGoogle Scholar
  68. Walsh, I., K. Fischer, D. Murray and J. Dymond (1988): Evidence for resuspension of rebound particles from near-bottom sediment traps. Deep-Sea Res., 35(1), 59–70.CrossRefGoogle Scholar
  69. Wolla, M. D., P. Y. Lau, S. L. Morgan, A. L. Fox and A. Brown (1984): Capillary gas chromatography-mass spectrometry of carbohydrate components of Legionelle and other bacteria. J. Chromat., 288, 399–413.CrossRefGoogle Scholar
  70. Worm, B., M. Sandow, A. Oschlies, H. K. Lotze and R. A. Myer (2005): Global patterns of predator diversity in the open oceans. Science, 309(5739), 1365–1369.CrossRefGoogle Scholar
  71. Yan, X. H., C. R. Ho, Q. Zheng and V. Klemas (1992): Temperature and size variabilities of the Western Pacific Warm Pool. Science, 258, 1643–1645.CrossRefGoogle Scholar
  72. Yu, E. F., R. Francois, M. P. Bacon, S. Honjo, A. P. Fleer, S. J. Manganini, M. M. Rutgers van der Loeff and V. Ittekkot (2001): Trapping efficiency of bottom tethered sediment traps estimated from the intercepted fluxes of 230Th and 231Pa. Deep-Sea Res., 48, 865–889.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan/TERRAPUB/Springer 2007

Authors and Affiliations

  1. 1.SPD, CDEX, JAMSTEC, Yokohama Institute for Earth SciencesShowamachi, Kanazawa-ku, YokohamaJapan
  2. 2.Ocean Research InstituteUniversity of TokyoMinamidai, Nakano-ku, TokyoJapan
  3. 3.Kochi Core CenterMonobe, NankokuJapan

Personalised recommendations