Journal of Oceanography

, Volume 63, Issue 4, pp 643–659 | Cite as

Evaluation of spatial correlation between nutrient exchange rates and benthic biota in a reef-flat ecosystem by GIS-assisted flow-tracking

  • Toshihiro Miyajima
  • Yoshiyuki Tanaka
  • Isao Koike
  • Hiroya Yamano
  • Hajime Kayanne
Original Articles


A Geographic Information System (GIS)-aided flow-tracking technique was adopted to investigate nutrient exchange rates between specific benthic communities and overlying seawater in a fringing reef of Ishigaki Island, subtropical Northwestern Pacific. Net exchange rates of NO3 , NO2 , NH4 +, PO4 3−, Total-N and Total-P were estimated from concentration changes along the drogue trajectories, each of which was tracked by the Global Positioning System and plotted on a benthic map to determine the types of benthic habitat over which the drogue had passed. The observed nutrient exchange rates were compared between 5 typical benthic zones (branched-coral (B) and Heliopora communities (H), seaweed-reefrock zone (W), bare sand area (S), and seagrass meadow (G)). The dependence of nutrient exchange rates on nutrient concentrations, physical conditions and benthic characteristics was analyzed by multiple regression analysis with the aid of GIS. The spatial correlation between nutrient exchange rates and benthic characteristics was confirmed, especially for NO3 and PO4 3−, which were usually absorbed in hydrographically upstream zones B and W and regenerated in downstream zones H and G. NO3 uptake in zones B and W was concentration-dependent, and the uptake rate coefficient was estimated to be 0.58 and 0.67 m h−1, respectively. Both nutrient uptake in zone W and regeneration in zone H were enhanced in summer. The net regeneration ratio of NO3 /PO4 3− in zone H in summer ranged 5.2 to 34 (mean, 17.4), which was somewhat higher than previously measured NO3 /PO4 3− for sediment pore waters around this zone (1.1–8.5). Nutrient exchanges in zone S were relatively small, indicating semi-closed nutrient cycling at the sediment-water interface of this zone. NH4 + efflux from sediments was suggested in zone G. The data suggest that the spatial pattern of nutrient dynamics over the reef flat community was constrained by zonation of benthic biota, and that abiotic factors such as nutrient concentrations and flow rates, influenced nutrient exchange rates only in absorption-dominated communities such as zones B and W.


Nutrient flux benthic macrophytes coral reef Geographic Information System (GIS) nitrate phosphate silicate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, J. C. and H. Müller (1983): Space-time variability of nutrients in a lagoonal patch reef. Limnol. Oceanogr., 28, 215–227.Google Scholar
  2. Atkinson, M. J. (1987): Rates of phosphorus uptake by coral reef flat communities. Limnol. Oceanogr., 32, 426–435.Google Scholar
  3. Atkinson, M. J. and R. W. Bilger (1992): Effects of water velocity on phosphate uptake in coral reef flat communities. Limnol. Oceanogr., 37, 273–279.Google Scholar
  4. Atkinson, M. J. and J. L. Falter (2003): Coral Reefs. p. 40–64. In Biogeochemistry of Marine Systems, ed. by K. D. Black and G. B. Shimmield, Blackwell Publishing, Oxford.Google Scholar
  5. Baird, M. E., M. Roughan, R. W. Brander, J. H. Middleton and G. J. Nippard (2004): Mass-transfer-limited nitrate uptake on a coral reef flat, Warraber Island, Torres Strait, Australia. Coral Reefs, 23, 386–396.CrossRefGoogle Scholar
  6. Barnes, D. J. (1983): Profiling coral reef productivity and calcification using pH and oxygen electrodes. J. Exp. Mar. Biol. Ecol., 66, 149–161.CrossRefGoogle Scholar
  7. Barnes, D. J. and M. J. Devereux (1984): Productivity and calcification on a coral reef: a survey using pH and oxygen electrode techniques. J. Exp. Mar. Biol. Ecol., 79, 213–231.CrossRefGoogle Scholar
  8. Bilger, R. W. and M. J. Atkinson (1995): Effects of nutrient loading on mass-transfer rates to a coral-reef community. Limnol. Oceanogr., 40, 279–289.CrossRefGoogle Scholar
  9. Burnett, W. C., H. Bokuniewicz, M. Huettel, W. S. Moore and M. Taniguchi (2003): Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 66, 3–33.CrossRefGoogle Scholar
  10. Burris, R. H. (1983): Uptake and assimilation of 15NH4 + by a variety of corals. Mar. Biol., 75, 151–155.CrossRefGoogle Scholar
  11. Burton, J. D., T. M. Leatherland and P. S. Liss (1970): The reactivity of dissolved silicon in some natural waters. Limnol. Oceanogr., 15, 473–476.Google Scholar
  12. Bythell, J. C. (1990): Nutrient uptake in the reef-building coral Acropora palmata at natural environmental concentrations. Mar. Ecol. Prog. Ser., 68, 65–69.Google Scholar
  13. Capone, D. G., S. E. Dunham, S. G. Horrigan and L. E. Duguay (1992): Microbial nitrogen transformations in unconsolidated coral reef sediments. Mar. Ecol. Prog. Ser., 80, 75–88.Google Scholar
  14. Charpy, L., C. Charpy-Roubaud and P. Buat (1998): Excess primary production, calcification and nutrient fluxes of a patch reef (Tikehau atoll, French Polynesia). Mar. Ecol. Prog. Ser., 173, 139–147.Google Scholar
  15. Coffroth, M. A. (1990): Mucus sheet formation on poritid coral: an evaluation of coral mucus as a nutrient source on reefs. Mar. Biol., 105, 39–49.CrossRefGoogle Scholar
  16. Coles, S. L. and R. Strathmann (1973): Observations on coral mucus “flocs” and their potential trophic significance. Limnol. Oceanogr., 18, 673–678.Google Scholar
  17. Corredor, J. E. and J. Morell (1985): Inorganic nitrogen in coral reef sediments. Mar. Chem., 16, 379–384.CrossRefGoogle Scholar
  18. Crossland, C. J. and D. J. Barnes (1983): Dissolved nutrients and organic particles in water flowing over coral reefs at Lizard Island. Aust. J. Mar. Freshw. Res., 34, 835–844.CrossRefGoogle Scholar
  19. D’Elia, C. F. (1977): The uptake and release of dissolved phosphorus by reef corals. Limnol. Oceanogr., 22, 301–315.Google Scholar
  20. D’Elia, C. F. (1988): The cycling of essential elements in coral reefs. p. 195–230. In Concepts of Ecosystem Ecology, ed. by L. R. Pomeroy and J. J. Alberts, Springer, New York.Google Scholar
  21. D’Elia, C. F. and W. J. Wiebe (1990): Biogeochemical nutrient cycles in coral-reef ecosystems. p. 49–74. In Coral Reefs, ed. by Z. Dubinsky, Elsevier Science Publishers B.V., Amsterdam.Google Scholar
  22. Diaz, M. C. and K. Rützler (2001): Sponges: An essential component of Carribean coral reefs. Bull. Mar. Sci., 69, 535–546.Google Scholar
  23. Falter, J. L., M. J. Atkinson and M. A. Merrifield (2004): Mass-transfer limitation of nutrient uptake by a wave-dominated reef flat community. Limnol. Oceanogr., 49, 1820–1831.CrossRefGoogle Scholar
  24. Grasshoff, K., K. Kremling and M. Ehrhardt (1999): Methods of Seawater Analysis. Wiley, Weinheim.Google Scholar
  25. Harii, S. and H. Kayanne (2003): Larval dispersal, recruitment, and adult distribution of the brooding stony octocoral Heliopora coerulea on Ishigaki Island, southwest Japan. Coral Reefs, 22, 188–196.CrossRefGoogle Scholar
  26. Hata, H., S. Kudo, H. Yamano, N. Kurano and H. Kayanne (2002): Organic carbon flux in Shiraho coral reef (Ishigaki Island, Japan). Mar. Ecol. Prog. Ser., 232, 129–140.Google Scholar
  27. Hearn, C. J., M. J. Atkinson and J. L. Falter (2001): A physical derivation of nutrient-uptake rates in coral reefs: effects of roughness and waves. Coral Reefs, 20, 347–356.CrossRefGoogle Scholar
  28. Hopkinson, C. S., B. F. Sherr and H. W. Ducklow (1987): Microbial regeneration of ammonium in the water column of Davies Reef, Australia. Mar. Ecol. Prog. Ser., 41, 147–153.Google Scholar
  29. Johannes, R. E., W. J. Wiebe and C. J. Crossland (1983): Three patterns of nutrient flux in a coral reef community. Mar. Ecol. Prog. Ser., 12, 131–136.Google Scholar
  30. Kawahata, H., I. Yukino and A. Suzuki (2000): Terrestrial influences on the Shiraho fringing reef, Ishigaki Island, Japan: high carbon input relative to phosphate. Coral Reefs, 19, 172–178.CrossRefGoogle Scholar
  31. Kayanne, H., S. Harii, Y. Ide and F. Akimoto (2002): Recovery of coral populations after the 1998 bleaching on Shiraho Reef, in the southern Ryukyus, NW Pacific. Mar. Ecol. Prog. Ser., 239, 93–103.Google Scholar
  32. Mioche, D. and P. Cuet (1999): Métabolisme du carbone, des carbonates et des sels nutritifs en saison chaude, sur un récif frangeant soumis à une pression anthropique (île de la Réunion, océan Indien). C. R. Acad. Sci. Paris Earth Planet. Sci., 329, 53–59.Google Scholar
  33. Miyajima, T., I. Koike, H. Yamano and H. Iizumi (1998): Accumulation and transport of seagrass-derived organic matter in reef flat sediment of Green Island, Great Barrier Reef. Mar. Ecol. Prog. Ser., 175, 251–259.Google Scholar
  34. Miyajima, T., M. Suzumura, Y. Umezawa and I. Koike (2001): Microbiological nitrogen transformation in carbonate sediments of a coral-reef lagoon and associated seagrass beds. Mar. Ecol. Prog. Ser., 217, 273–286.Google Scholar
  35. Miyajima, T., H. Hata, Y. Umezawa, H. Kayanne and I. Koike (2007): Distribution and partitioning of nitrogen and phosphorus in a fringing reef lagoon of Ishigaki Island, Northwestern Pacific. Mar. Ecol. Prog. Ser. (in press).Google Scholar
  36. Mwashote, B. M. and I. O. Jumba (2002): Quantitative aspects of inorganic nutrient fluxes in the Gazi Bay (Kenya): implications for coastal ecosystems. Mar. Pollut. Bull., 44, 1194–1205.CrossRefGoogle Scholar
  37. Nakamori, T., A. Suzuki and Y. Iryu (1992): Water circulation and carbon flux on Shiraho coral reef of the Ryukyu Islands, Japan. Cont. Shelf Res., 12, 951–970.CrossRefGoogle Scholar
  38. Odum, H. T. and E. P. Odum (1955): Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol. Monogr., 25, 291–320.CrossRefGoogle Scholar
  39. Pilson, M. E. and S. B. Betzer (1973): Phosphorus flux across a coral reef. Ecology, 54, 581–588.CrossRefGoogle Scholar
  40. Sorokin, Yu. I. (1990): Plankton in the reef ecosystems. p. 291–327. In Coral Reefs, ed. by Z. Dubinsky, Elsevier Science Publishers B.V., Amsterdam.Google Scholar
  41. Sorokin, Yu. I. (1992): Phosphorus metabolism in coral reef communities: exchange between the water column and bottom biotopes. Hydrobiologia, 242, 105–114.Google Scholar
  42. Steven, A. D. L. and M. J. Atkinson (2003): Nutrient uptake by coral-reef microatolls. Coral Reefs, 22, 197–204.CrossRefGoogle Scholar
  43. Suzumura, M., T. Miyajima, H. Hata, Y. Umezawa, H. Kayanne and I. Koike (2002): Cycling of phosphorus maintains the production of microphytobenthic communities in carbonate sediments of a coral reef. Limnol. Oceanogr., 47, 771–781.CrossRefGoogle Scholar
  44. Tanaka, Y. and H. Kayanne (2006): Species composition of tropical seagrass meadow in relation to multiple physical environmental factors. Ecol. Res., 22, 87–96.CrossRefGoogle Scholar
  45. Tanaka, Y., T. Miyajima, I. Koike, T. Hayashibara and H. Ogawa (2006): Translocation and conservation of organic nitrogen within the coral-zooxanthella symbiotic system of Acropora pulchra, as demonstrated by dual-isotope labeling techniques. J. Exp. Mar. Biol. Ecol., 336, 110–119.CrossRefGoogle Scholar
  46. Thomas, F. I. M. and M. J. Atkinson (1997): Ammonium uptake by coral reefs: Effects of water velocity and surface roughness on mass transfer. Limnol. Oceanogr., 42, 81–88.CrossRefGoogle Scholar
  47. Umezawa, Y., T. Miyajima, H. Kayanne and I. Koike (2002): Significance of groundwater nitrogen discharge into coral reefs at Ishigaki Island, Japan. Coral Reefs, 21, 346–356.Google Scholar
  48. Wafar, M., S. Wafar and J. J. David (1990): Nitrification in reef corals. Limnol. Oceanogr., 35, 725–730.CrossRefGoogle Scholar
  49. Webb, K. L. and W. J. Wiebe (1975): Nitrification on a coral reef. Can. J. Microbiol., 21, 1427–1431.Google Scholar
  50. Webb, K. L., W. D. DuPaul, W. Wiebe, W. Sottile and R. E. Johannes (1975): Enewetak (Eniwetok) Atoll: Aspects of nitrogen cycle on a coral reef. Limnol. Oceanogr., 20, 198–210.Google Scholar
  51. Wiebe, W. J. (1988): Coral reef energetics. p. 231–245. In Concepts of Ecosystem Ecology, ed. by L. R. Pomeroy and J. J. Alberts, Springer-Verlag, New York.Google Scholar

Copyright information

© The Oceanographic Society of Japan/TERRAPUB/Springer 2007

Authors and Affiliations

  • Toshihiro Miyajima
    • 1
  • Yoshiyuki Tanaka
    • 1
  • Isao Koike
    • 1
  • Hiroya Yamano
    • 2
  • Hajime Kayanne
    • 2
  1. 1.Department of Chemical Oceanography, Ocean Research InstituteThe University of TokyoMinamidai, Nakano-ku, TokyoJapan
  2. 2.Department of Earth and Planetary Science, Graduate School of ScienceThe University of TokyoHongo, Bunkyo-ku, TokyoJapan

Personalised recommendations