Journal of Oceanography

, Volume 63, Issue 3, pp 427–447 | Cite as

Importance of tropical cyclone heat potential for tropical cyclone intensity and intensification in the Western North Pacific



Which is more important for tropical cyclone (TC) intensity and intensification, sea surface temperature (SST) or tropical cyclone heat potential (TCHP)? Investigations using best-track TC central pressures, TRMM/TMI three-day mean SST data, and an estimated TCHP based on oceanic reanalysis data from 1998 to 2004, show that the central pressure is more closely related to TCHP accumulated from TC formation to its mature stages than to the accumulated SST and its duration. From an oceanic environmental viewpoint, a rapid deepening of TC central pressure occurs when TCHP is relatively high on a basin scale, while composite distributions of TCHP, vertical wind shear, lower tropospheric relative humidity, and wind speed occurring in cases of rapid intensification are different for each TC season. In order to explore the influence of TCHP on TC intensity and intensification, analyses using both oceanic reanalysis data and the results of numerical simulations based on an ocean general circulation model are performed for the cases of Typhoons Chaba (2004) and Songda (2004), which took similar tracks. The decrease in TCHP due to the passage of Chaba led to the suppression of Songda’s intensity at the mature stage, while Songda maintained its intensity for a relatively long time because induced near-inertial currents due to the passage of Chaba reproduced anticyclonic warm eddies appearing on the leftside of Chaba’s track before Songda passed by. This type of intensity-sustenance process caused by the passage of a preceding TC is often found in El Niño years. These results suggest that TCHP, but not SST, plays an important role in TC intensity and its intensification.


Tropical cyclone heat potential tropical cyclone intensity sea surface temperature rapid intensification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, G. D. and C. R. Holliday (1977): Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the western North Pacific. Mon. Wea. Rev., 105, 421–427.CrossRefGoogle Scholar
  2. Baik, J.-J. and J.-S. Paek (1998): A climatology of sea surface temperature and the maximum intensity of western North Pacific tropical cyclones. J. Meteor. Soc. Japan, 76, 129–137.Google Scholar
  3. Bao, J.-W., J. M. Wilczak, J.-K. Choi and L. H. Kantha (2000): Numerical simulations of air-sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 2190–2210.CrossRefGoogle Scholar
  4. Bender, M. A. and I. Ginis (2000): Real-case simulations of hurricane-ocean interaction using a high resolution coupled model: Effects of hurricane intensity. Mon. Wea. Rev., 128, 917–945.CrossRefGoogle Scholar
  5. Briegel, L. M. and W. M. Frank (1997): Large-scale influences of tropical cyclogenesis in the western North Pacific. Mon. Wea. Rev., 125, 1397–1413.CrossRefGoogle Scholar
  6. Camargo, S. J. and A. H. Sobel (2005): Western North Pacific tropical cyclone intensity and ENSO. J. Climate, 18, 2996–3006.CrossRefGoogle Scholar
  7. Camp, J. P. and M. T. Montgomery (2001): Hurricane maximum intensity: Past and present. J. Atmos. Sci., 129, 1704–1717.Google Scholar
  8. Chan, J. C. L. and K. S. Liu (2004): Global warming and western north pacific typhoon activity from an observational perspective. J. Climate, 17, 4590–4602.CrossRefGoogle Scholar
  9. Chan, J. C. L., Y. Duan and L. K. Shay (2001): Tropical cyclone intensity change from a simple ocean-atmosphere coupled model. J. Atmos. Sci., 58, 154–172.CrossRefGoogle Scholar
  10. Chang, S. W. and R. V. Madala (1980): Numerical simulation of the influence of sea surface temperature on translating tropical cyclones. J. Atmos. Sci., 37, 2617–2630.CrossRefGoogle Scholar
  11. Cione, J. J. and E. W. Uhlhorn (2003): Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 1783–1796.CrossRefGoogle Scholar
  12. DeMaria, M. and J. Kaplan (1994a): Sea surface temperature and the maximum intensity of Atlantic tropical cyclones. J. Climate, 7, 1324–1334.CrossRefGoogle Scholar
  13. DeMaria, M. and J. Kaplan (1994b): A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209–220.CrossRefGoogle Scholar
  14. DeMaria, M. and J. Kaplan (1999): An updated statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326–337.CrossRefGoogle Scholar
  15. DeMaria, M., M. Michelle, L. K. Shay, J. A. Knaff and J. Kaplan (2005): Further improvement to the statistical hurricane intensity prediction scheme (SHIPS). Wea. Forecasting, 20, 531–543.CrossRefGoogle Scholar
  16. Donlon, C. J., P. J. Minnett, C. Gentemann, T. J. Nightingale, I. J. Barton, B. Ward and M. J. Murray (2002): Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Climate, 15, 353–369.CrossRefGoogle Scholar
  17. Emanuel, K. A. (1995): Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969–3976.CrossRefGoogle Scholar
  18. Emanuel, K. A., C. DesAutels, C. Holloway and R. Korty (2004): Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843–858.CrossRefGoogle Scholar
  19. Evans, J. L. (1993): Sensitivity of tropical cyclone intensity to sea surface temperature. J. Climate, 6, 1133–1140.CrossRefGoogle Scholar
  20. Fedorov, K. N., A. A. Varfolomeyev, A. J. Ginsburg, A. G. Zatsepin, A. Yu. Krasnopevtsev, A. G. Ostrovskiy and V. Ye. Sklyarov (1979): Thermal response of the ocean to the passage of hurricane Ella. Oceanology, 19, 656–661.Google Scholar
  21. Ginis, I. (1995): Ocean response to tropical cyclone. p. 198–216. In Global Perspective on Tropical Cyclones, ed. by R. L. Elsberry, WMO/TD-No. 693.Google Scholar
  22. Goni, G. J. and J. A. Trinanes (2003): Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. EOS Trans. AGU, 84(51), 573, 577–578.CrossRefGoogle Scholar
  23. Gray, M. (1979): Hurricanes: their formation, structure, and likely role in the tropical circulation. p. 155–218. In Meteorology over the Tropical Oceans, ed. by D. B. Shaw, Roy. Meteor. Soc., James Glaisher House, Grenville Place, Bracknell, Berkshire, RG12 1BX.Google Scholar
  24. Holland, G. J. (1995): Scale interaction in the western Pacific monsoon. Meteorol. Atmos. Phys., 56, 57–79.CrossRefGoogle Scholar
  25. Holliday, C. R. and A. H. Thompson (1979): Climatological characteristics of rapid intensifying typhoons. Mon. Wea. Rev., 107, 1022–1034.CrossRefGoogle Scholar
  26. Hong, W., S. W. Chang, S. Raman, L. K. Shay and R. Hodur (2000): The interaction between hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon. Wea. Rev., 128, 1347–1365.CrossRefGoogle Scholar
  27. Ishikawa, I., H. Tsujino, M. Hirabara, H. Nakano, T. Yasuda and H. Ishizaki (2005): Meteorological Research Institute Community Ocean Model (MRI.COM) manual. Technical reports of the Meteorological Research Institute, 47, 189 pp. (in Japanese).Google Scholar
  28. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino and G. L. Potter (2002): NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc., 83, 1631–1643.CrossRefGoogle Scholar
  29. Kaplan, J. and M. DeMaria (2003): Large-scale characteristic of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 1093–1108.CrossRefGoogle Scholar
  30. Knaff, J. A. and R. M. Zehr (2006): Reexamination of tropical cyclone wind-pressure relationships. Wea. Forecasting, 22, 71–88.CrossRefGoogle Scholar
  31. Kondo, J. (1975): Air-sea bulk transfer coefficients in diabatic conditions. Boundary Layer Meteorol., 9, 91–112.CrossRefGoogle Scholar
  32. Leipper, D. F. and D. Volgenau (1972): Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218–224.CrossRefGoogle Scholar
  33. Lin, I.-I., C.-C. Wu, K. A. Emanuel, I.-H. Lee, C.-R. Wu and I.-F. Pun (2005): The interaction of supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 2635–2649.CrossRefGoogle Scholar
  34. Noh, Y. and H. Kim (1999): Simulations of temperature and turbulent structure of the oceanic boundary layer with the improved near-surface process. J. Geophys. Res., 104, 15621–15634.Google Scholar
  35. Oey, L.-Y., T. Ezer, D.-P. Wang, S.-J. Fan and X.-Q. Yin (2006): Loop Current warming by hurricane Wilma. Geophys. Res. Lett., 33, L08613, doi:10.1029/2006GL025873.Google Scholar
  36. Ooyama, K. V. (1982): Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369–380.Google Scholar
  37. Palmén, E. H. (1948): On the formation and structure of tropical cyclones. Geophysica, 3, 26–38.Google Scholar
  38. Price, J. F. (1981): Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175.CrossRefGoogle Scholar
  39. Pudov, V. D., A. A. Varfolomeyev and K. N. Fedorov (1978): Vertical structure of the wake of a typhoon in the upper ocean. Oceanology, 18, 142–146.Google Scholar
  40. Reed, R. J. and E. E. Recker (1971): Structure and properties of synoptic-scale wave disturbances in the equatorial western Pacific. J. Atmos. Sci., 28, 1117–1133.CrossRefGoogle Scholar
  41. Riehl, H. (1972): Intensity of recurved typhoons. J. Appl. Meteor., 11, 613–615.CrossRefGoogle Scholar
  42. Schade, L. R. and K. A. Emanuel (1999): The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere-ocean model. J. Atmos. Sci., 56, 642–651.CrossRefGoogle Scholar
  43. Scharroo, R. (2006): Reply to comment on “Satellite altimetry and the intensification of hurricane Katrina”. EOS Trans. AGU, 87(8), 90.CrossRefGoogle Scholar
  44. Scharroo, R., W. H. F. Smith and J. L. Lillibridge (2005): Satellite altimetry and the intensification of hurricane Katrina. EOS Trans. AGU, 86(40), 366.CrossRefGoogle Scholar
  45. Shay, L. K., P. G. Black, A. J. Mariano, J. D. Hawkins and R. L. Elsberry (1992): Upper ocean response to hurricane Gilbert. J. Geophys. Res., 97, 20227–20248.Google Scholar
  46. Shay, L. K., G. J. Goni and P. G. Black (2000): Effects of a warm oceanic feature on hurricane Opal. Mon. Wea. Rev., 128, 1366–1383.CrossRefGoogle Scholar
  47. Sun, D., R. Gautam, G. Cervone and M. Kafatos (2006): Comment on “Satellite altimetry and the intensification of hurricane Katrina”. EOS Trans. AGU, 87(8), 89–90.CrossRefGoogle Scholar
  48. Trenberth, K. (2005): Uncertainty in hurricanes and global warming. Science, 308, 1753–1754.CrossRefGoogle Scholar
  49. Usui, N., S. Ishizaki, Y. Fujii, H. Tsujino, T. Yasuda and M. Kamachi (2006): Meteorological research institute multivariate ocean variational estimation (MOVE) system: Some early results. J. Adv. Space Res., 37, 806–822.CrossRefGoogle Scholar
  50. Wada, A. (2002): The processes of SST cooling by typhoon passage and case study of Typhoon Rex with a mixed layer ocean model. Pap. Meteor. Geophys., 52, 31–66.CrossRefGoogle Scholar
  51. Wada, A. (2005a): Interrelationship of landfall of typhoons on Japan, sea surface temperature, atmospheric environment, and ocean heat content in 2004. Kaiyo Monthly, 42, 30–39 (in Japanese).Google Scholar
  52. Wada, A. (2005b): Numerical simulations of sea surface cooling by a mixed layer model during the passage of typhoon Rex. J. Oceanogr., 61, 41–57.CrossRefGoogle Scholar
  53. Wada, A. (2006): Numerical experiments of typhoons in 2004 typhoon season using a non-hydrostatic atmospheric model coupled with a mixed-layer ocean model. CAS/JSC WGNG Research Activities in Atmospheric and Oceanic Modelling, 9–09.Google Scholar
  54. Wang, Y. and C.-C. Wu (2004): Current understanding of tropical cyclone structure and intensity changes—a review. Meteorol. Atmos. Phys., 87, 257–278.CrossRefGoogle Scholar
  55. Whitney, L. D. and J. S. Hobgood (1997): The relationship between sea surface temperatures and maximum intensities of tropical cyclones in the eastern North Pacific Ocean. J. Climate, 10, 2921–2930.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan/TERRAPUB/Springer 2007

Authors and Affiliations

  1. 1.Meteorological Research InstituteJapan Meteorological AgencyNagamine, Tsukuba, IbarakiJapan

Personalised recommendations