Journal of Oceanography

, Volume 63, Issue 1, pp 101–112 | Cite as

Effects of fixation and storage on flow cytometric analysis of marine bacteria

  • Eriko Kamiya
  • Shinji Izumiyama
  • Masahiko Nishimura
  • James G. Mitchell
  • Kazuhiro Kogure
Original Article

Abstract

Flow cytometry (FCM) is now becoming a routine tool for the enumeration and optical characterization of bacteria in marine environments. We investigated the effects of sample fixation and storage upon flow cytometric determination of marine bacteria. Fixed and unfixed seawater samples were analyzed by FCM immediately aboard ship and/or later in the laboratory, and the appearances of the fluorescence signals and bacterial counts of these samples were compared. Fixation and storage led to the formation of multiple peaks in fluorescence histograms; this was also seen in 22 out of 36 samples frozen in liquid nitrogen. Fixation did not, but storage did induce a decrease of bacterial counts: a rapid decrease during the first 3 days followed by a slower decline. The decline of cell numbers in stored samples was expressed by a regression model. Our studies indicate that precaution is necessary when interpreting the data from fixed and/or stored marine bacterial samples analyzed by FCM. The possibility that the procedure of fixation and storage leads to the appearance of high DNA and low DNA bacterial groups should be considered.

Keywords

Flow cytometry marine bacteria fixation storage HDNA bacteria LDNA bacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beveridge, T. J., F. M. R. Williams and J. J. Koval (1978): The effect of chemical fixatives on cell walls of Bacillus subtilis. Can. J. Microbiol., 24, 1439–1451.Google Scholar
  2. Bullock, G. R. (1984): The current status of fixation for electron microscopy: a review. J. Microsc., 133, 1–15.Google Scholar
  3. Button, D. K. and B. R. Robertson (2001): Determination of DNA content of aquatic bacteria by flow cytometry. Appl. Environ. Microbiol., 67, 1636–1645.CrossRefGoogle Scholar
  4. Cotner, J. B., M. L. Ogdahl and B. A. Biddanda (2001): Double-stranded DNA measurement in lakes with the fluorescent strain PicoGreen and the application to bacterial bioassays. Aquat. Microb. Ecol., 25, 65–74.Google Scholar
  5. Davey, H. M. and D. B. Kell (1996): Flow cytometry and cell sorting of heterogeneous microbial populations: The importance of single-cell analyses. Microbiol. Rev., 60, 641–696.Google Scholar
  6. Decamp, O. and N. Rajendran (1998): Bacterial loss and degradation of bacterial membrane in preserved seawater samples. Mar. Pollut. Bull., 36, 856–859.CrossRefGoogle Scholar
  7. del Giorgio, P. A., D. F. Bird, Y. T. Prairie and D. Planas (1996): Flow cytometric determination of bacterial abundance in lake plankton with the green nucleic acid stain SYTO 13. Limnol. Oceanogr., 41, 783–789.CrossRefGoogle Scholar
  8. Fry, J. C. and A. R. Davies (1985): An assessment of methods for measuring volumes of planktonic bacteria, with particular reference to television image analysis. J. Appl. Bacteriol., 58, 105–112.Google Scholar
  9. Gasol, J. M. and P. A. del Giorgio (2000): Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Sci. Mar., 64, 197–224.CrossRefGoogle Scholar
  10. Gasol, J. M. and X. A. Moran (1999): Effects of filtration on bacterial activity and picoplankton community structure as assessed by flow cytometry. Aquat. Microb. Ecol., 16, 251–264.Google Scholar
  11. Gasol, J. M., U. L. Zweifel, F. Peters, J. A. Fuhrman and A. Hagstrom (1999): Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Appl. Environ. Microbiol., 65, 4475–4483.Google Scholar
  12. Gasol, J. M., M. Comerma, J. C. Garcia, J. Armengol, E. O. Casamayor, P. Kojecka and K. Simek (2002): A transplant experiment to identify the factors controlling bacterial abundance, activity, production, and community composition in a eutrophic canyon-shaped reservoir. Limnol. Oceanogr., 47, 62–77.CrossRefGoogle Scholar
  13. Guindulain, T. and J. Vives-Rego (2002): Involvement of RNA and DNA in the staining of Escherichia coli by SYTO 13. Lett. Appl. Microbiol., 34, 182–188.CrossRefGoogle Scholar
  14. Guindulain, T., J. Comas and J. Vies-Rego (1997): Use of nucleic acid dyes SYTO-13, TOTO-1, and YOYO-1 in the study of Escherichia coli and marine prokaryotic populations by flow cytometry. Appl. Environ. Microbiol., 63, 4608–4611.Google Scholar
  15. Gundersen, K., G. Bratbak and M. Heldal (1996): Factors influencing the loss of bacteria in preserved seawater samples. Mar. Ecol. Prog. Ser., 137, 305–310.Google Scholar
  16. Haselkorn, R. and P. Doty (1961): The reaction of formaldehyde with polynucleotides. J. Biol. Chem., 236, 2738–2745.Google Scholar
  17. Jellett, J. F., W. K. W. Li, P. M. Dickie, A. Boraie and P. E. Kepkay (1996): Metabolic activity of bacterioplankton communities assessed by flow cytometry and single carbon substrate utilization. Mar. Ecol. Prog. Ser., 136, 213–225.Google Scholar
  18. Jochem, F. J. (2001): Morphology and DNA content of bacterioplankton in the northern Gulf of Mexico: Analysis by epifluorescence microscopy and flow cytometry. Cytometry, 25, 179–194.Google Scholar
  19. Kepner, R. L. and J. R. Pratt (1994): Use of fluorochromes for direct enumeration of total bacteria in environmental samples: Past and present. Microbiol. Rev., 58, 603–615.Google Scholar
  20. Kogure, K., U. Simidu and N. Taga (1979): A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol., 25, 415–420.Google Scholar
  21. Lebaron, P., N. Parthuisot and P. Catala (1998): Comparison of blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systems. Appl. Environ. Microbiol., 64, 1725–1730.Google Scholar
  22. Lebaron, P., P. Servais and H. Agogue (2001): Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems? Appl. Environ. Microbiol., 67, 1775–1782.CrossRefGoogle Scholar
  23. Li, W. K. W., J. F. Jellett and P. M. Dickie (1995): DNA distributions in planktonic bacteria stained with TOTO or TO-PRO. Limnol. Oceanogr., 40, 1485–1495.CrossRefGoogle Scholar
  24. Marie, D., D. Vaulot and F. Partensky (1996): Application of novel nucleic acid dyes YOYO-1, YO-PRO-1, and PicoGreen for flow cytometric analysis of marine prokaryotes. Appl. Environ. Microbiol., 62, 1649–1655.Google Scholar
  25. Marie, D., F. Partensky, S. Jacquet and D. Vaulot (1997): Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol., 63, 186–193.Google Scholar
  26. Marie, D., F. Partensky, D. Vaulot and C. Brussaard (1999): Enumeration of phytoplankton, bacteria and viruses in marine samples. p. 11.11.1–11.11.15. In Current Protocols in Cytometry, ed. by J. P. Robinson, John Wiley & Sons, Inc., New York.Google Scholar
  27. Nagata, T., T. Someya, T. Konda, M. Yamamoto, K. Morikawa, M. Fukui, N. Kuroda, K. Takahashi, S. Oh, M. Mori, S. Arai and K. Kato (1989): Intercalibration of the acridine orange direct count method of aquatic bacteria. Bull. Japan. Soc. Microb. Ecol., 4, 89–99.Google Scholar
  28. Noble, R. T. and J. A. Fuhrman (1998): Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol., 14, 113–118.Google Scholar
  29. Pirker, H., C. Pausz, K. E. Stoderegger and G. J. Herndl (2005): Simultaneous measurement of metabolic activity and membrane integrity in marine bacterioplankton determined by confocal laser-scanning microscopy. Aquat. Microb. Ecol., 39, 225–233.Google Scholar
  30. Polacow, I., L. Cabasso and H. J. Li (1976): Histone redistribution and conformational effect on chromatin induced by formaldehyde. Biochemistry, 15, 4559–4565.CrossRefGoogle Scholar
  31. Porter, K. G. and Y. S. Feig (1980): The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25, 943–948.CrossRefGoogle Scholar
  32. Servais, P., E. O. Casamayor, C. Courties, P. Catala, N. Parthuisot and P. Lebaron (2003): Activity and diversity of bacterial cells with high and low nucleic acid content. Aquat. Microb. Ecol., 33, 41–51.Google Scholar
  33. Shibata, A., Y. Goto, H. Saito, T. Kikuchi, T. Toda and S. Taguchi (2006): Comparison of SYBR Green I and SYBR Gold stains for enumerating bacteria and viruses by epifluorescence microscopy. Aquat. Microb. Ecol., 43, 223–231.Google Scholar
  34. Suganuma, A. and H. Morioka (1979): Morphological changes in membrane systems of Staphylococci after different fixation procedures. J. Electron. Microsc., 28, 29–35.Google Scholar
  35. Troussellier, M., C. Courties and S. Zettelmaier (1995): Flow cytometric analysis of coastal lagoon bacterioplankton and picophytoplankton: fixation and storage effects. Estuar. Coast. Shelf Sci., 40, 621–633.CrossRefGoogle Scholar
  36. Troussellier, M., C. Courties, P. Lebaron and P. Servais (1999): Flow cytometric discrimination of bacterial populations in seawater based on SYTO 13 staining of nucleic acids. FEMS Microbiol. Ecol., 29, 319–330.CrossRefGoogle Scholar
  37. Turley, C. M. and D. J. Hughes (1992): Effects of storage on direct estimates of bacterial numbers of preserved seawater samples. Deep-Sea Res., 39, 375–394.CrossRefGoogle Scholar
  38. Vaque, D., E. O. Casamayor and J. M. Gasol (2001): Dynamics of whole community bacterial production and grazing losses in seawater incubations as related to the changes in the proportions of bacteria with different DNA content. Aquat. Microb. Ecol., 25, 163–177.Google Scholar
  39. Vitzthum, F., G. Geiger, H. Bisswanger, H. Brunner and J. Bernhagen (1999): A quantitative fluorescence-based microplate assay for the determination of double-stranded DNA using SYBR Green I and a standard ultraviolet transilluminator gel imaging system. Anal. Biochem., 276, 59–64.CrossRefGoogle Scholar
  40. Vosjan, J. H. and G. J. van Noort (1998): Enumerating nucleoid-visible marine bacterioplankton: bacterial abundance determined after storage of formalin fixed samples agrees with isopropanol rinsing method. Aquat. Microb. Ecol., 14, 149–154.Google Scholar
  41. Weinbauer, M. G., C. Beckmann and M. G. Hofle (1998): Utility of green fluorescent nucleic acid dyes and aluminum oxide membrane filters for rapid epifluorescence enumeration of soil and sediment bacteria. Appl. Environ. Microbiol., 64, 5000–5003.Google Scholar
  42. Yanada, M., T. Yokokawa, C. W. Lee, H. Tanaka, I. Kudo and Y. Maita (2000): Seasonal variation of two different heterotrophic bacterial assemblages in subarctic coastal seawater. Mar. Ecol. Prog. Ser., 204, 289–292.Google Scholar
  43. Zubkov, M. V., B. M. Fuchs, P. H. Burkill and R. Amann (2001): Comparison of cellular and biomass specific activities of dominant bacterioplankton groups in stratified waters of the Celtic Sea. Appl. Environ. Microbiol., 67, 5210–5218.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan/TERRAPUB/Springer 2007

Authors and Affiliations

  • Eriko Kamiya
    • 1
  • Shinji Izumiyama
    • 2
  • Masahiko Nishimura
    • 1
  • James G. Mitchell
    • 1
  • Kazuhiro Kogure
    • 1
  1. 1.Marine Microbiology Division, Ocean Research InstituteThe University of TokyoMinamidai, Nakano-ku, TokyoJapan
  2. 2.Ikeda Scientific Co., LTD.Kaji-cho, Chiyoda-ku, TokyoJapan

Personalised recommendations