Journal of Oceanography

, Volume 62, Issue 6, pp 873–885 | Cite as

Spatial variability of phytoplankton absorption coefficients and pigments off Baja California during November 2002

  • Óscar A. Barocio-LeónEmail author
  • Roberto Millán-Núñez
  • Eduardo Santamaría-del-Ángel
  • Adriana González-Silvera
  • Charles C. Trees


We have estimated the spatial variability of phytoplankton specific absorption coefficients (a*ph) in the water column of the California Current System during November 2002, taking into account the variability in pigment composition and phytoplankton community structure and size. Oligotrophic conditions (surface Chl < 0.2 mg m−3) dominated offshore, while mesotrophic conditions (surface Chl 0.2 to 2.0 mg m−3) where found inshore. The specific absorption coefficient at 440 [a*ph(440)] ranged from 0.025–0.281 m2mg−1 while at 675 nm [a*ph(675)] it varied between 0.014 and 0.087 m2mg−1. The implementation of a size index based on HPLC data showed the community structure was dominated by picoplankton. This would reduce the package effect in the variability of a*ph(675). Normalized aph curves were classified in two groups according to their shape, separating all spectra with peaks between 440 and 550 nm as the second group. Most samples in the first group were from surface layers, while the second group were from the deep chlorophyll maximum or deeper. Accessory photoprotective pigments (APP) tended to decrease with depth and accessory photosynthetic pigments (APS) to increase, indicating the importance of photoprotective mechanisms in surface layers and adaptation to low light at depth. Samples with higher ratios of APP:APS (>0.4) were considered as phytoplankton adapted to high irradiances, and lower ratios (<0.26) as adapted to low irradiances. We found a good relationship between APP:APS and a*ph(440) for the deeper layer (DCM and below), but no clear evidence of the factors causing the variability of a*ph(440) in the upper layer.


Absorption coefficient phytoplankton pigments HPLC California Current 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguirre-Hernádez, E., G. Gaxiola-Castro, S. Nájera-Martínez, T. Baumgartner, M. Kahru and B. G. Mitchell (2004): Phytoplankton absorption, photosynthetic parameters, and primary production off Baja California: summer and autumn 1998. Deep-Sea Res. II, 51, 799–816.CrossRefGoogle Scholar
  2. Anderson, J. M., Y. I. Park and W. S. Chow (1997): Photoinactivation and photoprotection of photosystem II in nature. Physiologia Plant., 100, 214–223.CrossRefGoogle Scholar
  3. Babin, M., J. C. Therriault, L. Legendre and A. Condal (1993): Variations in the specific absorption coefficient for natural phytoplankton assemblages: Impact on estimates of primary production. Limnol. Oceanogr., 38(1), 154–177.CrossRefGoogle Scholar
  4. Bergmann, T., G. Fahnenstiel, S. Lohrenz, D. Millie and O. Schofield (2004): Impacts of a recurrent resuspension event and variable phytoplankton community composition on remote sensing reflectance. J. Geophys. Res., 109, C10S15.CrossRefGoogle Scholar
  5. Bidigare, R. R. and C. C. Trees (2000): HPLC phytoplankton pigments: sampling, laboratory methods, and quality assurance procedures. p. 154–161. In Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 2, Chapter 4, ed. by G. S. Farigion and J. L. Mueller, NASA TM 2000-209966, Goddard Space Flight Center, Greenbelt, MD.Google Scholar
  6. Bidigare, R. R., O. Schofield and B. B. Prézelin (1989): Influence of zeaxanthin on quantum yield of photosynthesis of Synechococcus clone WH7803. Mar. Ecol. Prog. Ser., 56, 177–188.CrossRefGoogle Scholar
  7. Bricaud, A., M. Babin, A. Morel and H. Claustre (1995): Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization. J. Geophys. Res., 100, 13,321–13,332.CrossRefGoogle Scholar
  8. Bricaud, A., A. Morel, M. Babin, K. Allali and H. Claustre (1998): Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models. J. Geophys. Res., 103, 31,033–31,044.CrossRefGoogle Scholar
  9. Bricaud, A., H. Claustre, J. Ras and K. Oubelkheir (2004): Natural variability of phytoplanktonic absorption in oceanic waters: Influence of the size structure of algal populations. J. Geophys. Res., 109, C11010.CrossRefGoogle Scholar
  10. Cleveland, J. S. (1995): Regional models for phytoplankton absorption as a function of chlorophyll a concentration. J. Geophys. Res., 100, 13,333–13,344.CrossRefGoogle Scholar
  11. DiTullio, G. R., M. E. Geesey, D. R. Jones, K. L. Daly, L. Campbell and W. O. Smith, Jr. (2003): Phytoplankton assemblage structure and primary productivity along 170°W in the South Pacific Ocean. Mar. Ecol. Prog. Ser., 255, 55–80.CrossRefGoogle Scholar
  12. Duysens, L. M. N. (1956): The flattening effect of the absorption spectra of suspensions as compared to that of solutions. Biochem. Biophys. Acta, 19, 1–12.CrossRefGoogle Scholar
  13. Eisner, L. E., M. S. Twardowski and T. J. Cowles (2003): Resolving phytoplankton photoprotective: photosynthetic carotenoid ratios on fine scales using in situ spectral absorption measurements. Limnol. Oceanogr., 48, 632–646.CrossRefGoogle Scholar
  14. Govindjee (2002): A role for a light-harvesting antenna complex of photosystem II in photoprotection. The Plant Cell, 14, 1663–1668.CrossRefGoogle Scholar
  15. Jeffrey, S. W., R. F. C. Mantoura and S. W. Wright (1997): Phytoplankton Pigments in Oceanography: Guidelines and Modern Methods. UNESCO Publishing, Paris, 661 pp.Google Scholar
  16. Kirk, J. O. (1994): Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge, 401 pp.CrossRefGoogle Scholar
  17. Kishino, M., N. Takahashi, N. Okami and S. Ichimura (1985): Estimation of the spectral absorption coefficients of phytoplankton in the sea. Bull. Mar. Sci., 37, 634–642.Google Scholar
  18. Latasa, M., R. R. Bidigare, M. E. Ondrusek and M. C. Kennicut, II (1996): HPLC analysis of algal pigments: a comparison exercise among laboratories and recommendations for improved analytical performance. Mar. Chem., 51, 315–324.CrossRefGoogle Scholar
  19. Lynn, R. J. and J. J. Simpson (1987): The California Current system: the seasonal variability of its physical characteristics. J. Geophys. Res., 92, 12,947–12,966.CrossRefGoogle Scholar
  20. Millán-Núñez, E., M. E. Sieracki, R. Millán-Núñez, J. R. Lara-Lara, G. Gaxiola-Castro and C. C. Trees (2004): Specific absorption coefficient and phytoplankton biomass in the southern region of the California Current. Deep-Sea Res. II, 51, 817–826.CrossRefGoogle Scholar
  21. Mitchell, B. G. (1990): Algorithms for determining the absorption coefficient of aquatic particulates using the quantitative filter technique (QFT). SPIE Oceans Optics X, 1302, 137–148.CrossRefGoogle Scholar
  22. Morel, A. (1988): Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters). J. Geophys. Res., 93, 10,749–10,768.CrossRefGoogle Scholar
  23. Morel, A. and A. Bricaud (1981): Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res., 28, 1375–1393.CrossRefGoogle Scholar
  24. Obayashi, Y., E. Tanoue, K. Suzuki, N. Handa, Y. Nojiri and C. S. Wong (2001): Spatial and temporal variabilities of phytoplankton community structure in the northern North Pacific as determined by phytoplankton pigments. Deep-Sea Res. I, 48, 439–469.CrossRefGoogle Scholar
  25. Olson, R. J., S. W. Chisholm, E. R. Zettler and E. V. Armbrust (1988): Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry. Deep-Sea Res., 35, 425–440.CrossRefGoogle Scholar
  26. Sosik, H. M. and B. G. Mitchell (1995): Light absorption by phytoplankton, photosynthetic pigments and detritus in the California Current System. Deep-Sea Res. I, 42(10), 1717–1748.CrossRefGoogle Scholar
  27. Spinrad, R. W. and J. F. Brown (1986): Relative real refractive index of marine microorganisms, a technique for flow cytometric estimation. Applied Optics, 25, 1930–1934.CrossRefGoogle Scholar
  28. Trees, C. C., D. K. Clark, R. R. Bidigare, M. E. Ondrusek and J. L. Mueller (2000): Accessory pigments versus chlorophyll a concentrations within the euphotic zone: A ubiquitous relationship. Limnol. Oceanogr., 45(5), 1130–1143.CrossRefGoogle Scholar
  29. Uitz, J., H. Claustre, A. Morel and S. B. Hooker (2006): Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J. Geophys. Res., 111, C08005.CrossRefGoogle Scholar
  30. Utermöhl, H. (1958): Zur vervollkommnung der quantitativen phytoplankton methodik. Mitteilungen Internationale Vereingung fuer Theoretische und Angewandte Limnologie, 9, 1–38.Google Scholar
  31. Vidussi, F., H. Calustre, B. B. Manca, A. Luchetta and J. C. Marty (2001): Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter. J. Geophys. Res., 106, 19,939–19,956.CrossRefGoogle Scholar
  32. Wright, S. W., S. W. Jeffrey, R. F. Mantoura, C. A. Llewellyn, T. Bjornland, D. Repeta and N. Welschmeyer (1991): Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol. Prog. Ser., 77, 183–196.CrossRefGoogle Scholar
  33. Yentsch, C. S. and D. A. Phinney (1989): A bridge between ocean optics and microbial ecology. Limnol. Oceanogr., 34(8), 1694–1705.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan/TERRAPUB/Springer 2006

Authors and Affiliations

  • Óscar A. Barocio-León
    • 1
    Email author
  • Roberto Millán-Núñez
    • 1
  • Eduardo Santamaría-del-Ángel
    • 1
  • Adriana González-Silvera
    • 1
  • Charles C. Trees
    • 2
  1. 1.Facultad de Ciencias MarinasUniversidad Autónoma de Baja CaliforniaEnsenada, Baja CaliforniaMéxico
  2. 2.Center for Hydro-Optics and Remote SensingSan Diego State UniversitySan DiegoUSA

Personalised recommendations