Journal of Oceanography

, Volume 62, Issue 5, pp 639–648 | Cite as

Cycladophora davisiana (Radiolaria) in the Okhotsk Sea: A key for reconstructing glacial ocean conditions

  • Yusuke Okazaki
  • Osamu Seki
  • Takeshi Nakatsuka
  • Tatsuhiko Sakamoto
  • Minoru Ikehara
  • Kozo Takahashi
Original Articles


Cycladophora davisiana, a radiolarian species dwelling at mesopelagic depths, is known as a representative glacial fauna due to its unique distribution during glacial periods. In the present ocean, abundant production of C. davisiana is only observed in the Okhotsk Sea, indicating an adaptation of C. davisiana for seasonal sea-ice covered conditions. We found pronounced abundant production of C. davisiana during the early to middle Holocene in the Okhotsk Sea, suggesting more favorable conditions for C. davisiana than the present Okhotsk Sea. In order to clarify the reason, oceanographic conditions during the Holocene were reconstructed based on biomarkers, lithogenic grains including ice-rafted debris (IRD), biogenic opal, and total organic carbon (TOC) in two sediment cores from the Okhotsk Sea. These indicators suggest that the pronounced C. davisiana production may be attributed to: 1) a supply to mesopelagic depths under intensified stratification of fine organic particles derived from coccolithophorids, bacteria, and detrital materials; and 2) cold, well-ventilated intermediate water formation.


Radiolaria intermediate water sea-ice stratification export production Okhotsk Sea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelmann, A. and A. Nimmergut (2005): Radiolarians in the Sea of Okhotsk and their ecological implication for paleoenvironmental reconstructions. Deep-Sea Res. II, 52, 2302–2331.CrossRefGoogle Scholar
  2. Alfultis, M. A. and S. Martin (1987): Satellite passive microwave studies of the sea of Okhotsk ice cover and its relation to oceanic processes, 1978–1982. J. Geophys. Res., 92, 13013–13028.Google Scholar
  3. An, Z. S., S. C. Porter, J. E. Kutzbach, X. H. Wu, S. M. Wang, X. D. Liu, X. Q. Li and W. J. Zhou (2000): Asynchronous Holocene optimum of the East Asian monsoon. Quat. Sci. Rev., 19, 743–762.CrossRefGoogle Scholar
  4. Behrenfeld, M. J. and P. G. Falkowski (1997): Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42, 1–20.CrossRefGoogle Scholar
  5. Broerse, A. T. C., P. Ziveri and S. Honjo (2000): Coccolithophore (-CaCO3) flux in the Sea of Okhotsk: seasonality, settling and alteration processes. Mar. Micropaleontol., 39, 179–200.CrossRefGoogle Scholar
  6. Dai, A. G. and K. E. Trenberth (2002): Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeorol., 3, 660–687.CrossRefGoogle Scholar
  7. Demske, D., G. Heumann, W. Granoszewski, M. Nita, K. Mamakova, P. E. Tarasov and H. Oberhänsli (2005): Late glacial and Holocene vegetation and regional climate variability evidenced in high-resolution pollen records from Lake Baikal. Global Planet. Change, 46, 255–279.CrossRefGoogle Scholar
  8. Dodimead, A. J., F. Favorite and T. Hirano (1963): Review of oceanography of the subarctic Pacific region. Bull. Int. North Pac. Fish. Comm., 13, 1–195.Google Scholar
  9. Egge, J. K. and B. R. Heimdal (1994): Blooms of phytoplankton including Emiliania huxleyi (Haptophyta)—effects of nutrient supply in different N-P ratios. Sarsia, 79, 333–348.Google Scholar
  10. Elvert, M., M. J. Whiticar and E. Suess (2001): Diploptene in varved sediments of Saanich Inlet: indicator of increasing bacterial activity under anaerobic conditions during the Holocene. Mar. Geol., 174, 371–383.CrossRefGoogle Scholar
  11. Favorite, F., A. J. Dodimead and K. Nasu (1976): Oceanography of the Subarctic Pacific region, 1960–71. Bull. Int. North Pac. Fish. Comm., 33, 1–187.Google Scholar
  12. Freeland, H. J., A. S. Bychkov, F. Whitney, C. Taylor, C. S. Wong and G. I. Yurasov (1998): WOCE section P1W in the Sea of Okhotsk 1. Oceanographic data description. J. Geophys. Res., 103, 15613–15623.Google Scholar
  13. Hays, J. D. and J. J. Morley (2003): The Sea of Okhotsk: A window on the ice age ocean. Deep-Sea Res. I, 50, 1481–1506.CrossRefGoogle Scholar
  14. Honjo, S. (1996): Fluxes of particles to the interior of the open ocean. p. 91–154. In Particle Flux in the Ocean, ed. by V. Ittekkot, P. Schäfer, S. Honjo and P. J. Depetris, John Wiley & Sons Ltd, West Sussex.Google Scholar
  15. Itaki, T. (2003): Depth-related radiolarian assemblage in the water-column and surface sediments of the Japan Sea. Mar. Micropaleontol., 47, 253–270.CrossRefGoogle Scholar
  16. Itaki, T. and K. Ikehara (2004): Middle to late Holocene changes of the Okhotsk Sea intermediate water and their relation to atmospheric circulation. Geophys. Res. Lett., 31(24), L24309, doi:10.1029/2004GL021384.Google Scholar
  17. Itoh, M., K. I. Ohshima and M. Wakatsuchi (2003): Distribution and formation of Okhotsk Sea Intermediate Water: An analysis of isopycnal climatological data. J. Geophys. Res., 108(C8), 3258, doi: 10.1029/2002JC001590.CrossRefGoogle Scholar
  18. Jaccard, S. L., G. H. Haug, D. M. Sigman, T. F. Pedersen, H. R. Thierstein and U. Röhl (2005): Glacial/interglacial changes in subarctic North Pacific stratification. Science, 308, 1003–1006.CrossRefGoogle Scholar
  19. Kienast, S. S., I. L. Hendy, J. Crusius, T. F. Pedersen and S. E. Calvert (2004): Export production in the subarctic North Pacific over the last 800 kyrs: no evidence for iron fertilization? J. Oceanogr., 60, 189–203.CrossRefGoogle Scholar
  20. Kimura, N. and M. Wakatsuchi (1999): Processes controlling the advance and retreat of sea ice in the Sea of Okhotsk. J. Geophys. Res., 104, 11137–11150.Google Scholar
  21. Kimura, N. and M. Wakatsuchi (2004): Increase and decrease of sea ice area in the Sea of Okhotsk: Ice production in coastal polynyas and dynamic thickening in convergence zones. J. Geophys. Res., 109, C09S03, doi: 10.1029/2003JC001901.Google Scholar
  22. Kitani, K. (1973): An oceanographic study of the Okhotsk Sea: particularly in regard to cold waters. Bull. Far Seas Fish. Res. Lab., 9, 45–77.Google Scholar
  23. Koizumi, I., K. Shiga, T. Irino and M. Ikehara (2003): Diatom record of the late Holocene in the Okhotsk Sea. Mar. Micropaleontol., 49, 139–156.CrossRefGoogle Scholar
  24. Kotilainen, A. T. and N. J. Shackleton (1995): Rapid climate variability in the North Pacific Ocean during the past 95,000 years. Nature, 377, 323–326.CrossRefGoogle Scholar
  25. Liu, H., K. Imai, K. Suzuki, Y. Nojiri, N. Tsurushima and T. Saino (2002): Seasonal variability of picophytoplankton and bacteria in the western subarctic Pacific Ocean at station KNOT. Deep-Sea Res. II, 49, 5409–5420.CrossRefGoogle Scholar
  26. Liu, H., K. Suzuki and H. Saito (2004): Community structure and dynamics of phytoplankton in the western subarctic Pacific Ocean: A synthesis. J. Oceanogr., 60, 119–137.CrossRefGoogle Scholar
  27. Martin, S., R. Drucker and K. Yamashita (1998): The production of ice and dense shelf water in the Okhotsk Sea polynyas. J. Geophys. Res., 103, 27771–27782.Google Scholar
  28. Mochizuki, M., N. Shiga, M. Saito and K. Imai (2002): Seasonal changes in nutrients, chlorophyll a and the phytoplankton assemblage of the western subarctic gyre in the Pacific Ocean. Deep-Sea Res. II, 49, 5421–5439.CrossRefGoogle Scholar
  29. Morley, J. J. (1980): Analysis of the abundance variations of the subspecies of Cycladophora davisiana. Mar. Micropaleontol., 5, 205–214.CrossRefGoogle Scholar
  30. Morley, J. J. (1983): Identification of density-stratified waters in the Late-Pleistocene North Atlantic: A faunal derivation. Quat. Res., 20, 374–386.CrossRefGoogle Scholar
  31. Morley, J. J. and J. D. Hays (1983): Oceanographic conditions associated with high abundances of the radiolarian Cycladophora davisiana. Earth Planet. Sci. Lett., 66, 63–72.CrossRefGoogle Scholar
  32. Morley, J. J. and S. W. Robinson (1986): Improved method for correlating late Pleistocene/Holocene records from the Bering Sea: application of a biosiliceous/geochemical stratigraphy. Deep-Sea Res., 33, 1203–1211.CrossRefGoogle Scholar
  33. Morley, J. J., J. D. Hays and J. H. Robertson (1982): Stratigraphic framework for the late Pleistocene in the northwest Pacific Ocean. Deep-Sea Res., 29, 1485–1499.CrossRefGoogle Scholar
  34. Nakatsuka, T., C. Yoshikawa, M. Toda, K. Kawamura and M. Wakatsuchi (2002): An extremely turbid intermediate water in the Sea of Okhotsk: Implication for the transport of particulate organic matter in a seasonally ice-bound sea. Geophys. Res. Lett., 29(16), 1732, doi:10.1029/2001GL014029.CrossRefGoogle Scholar
  35. Nakatsuka, T., T. Fujimune, C. Yoshikawa, S. Noriki, K. Kawamura, Y. Fukamachi, G. Mizuta and M. Wakatsuchi (2004a): Biogenic and lithogenic particle fluxes in the western region of the Sea of Okhotsk: Implications for lateral material transport and biological productivity. J. Geophys. Res., 109, C09S13, doi: 10.1029/2003JC001908.Google Scholar
  36. Nakatsuka, T., M. Toda, K. Kawamura and M. Wakatsuchi (2004b): Dissolved and particulate organic carbon in the Sea of Okhotsk: Transport from continental shelf to ocean interior. J. Geophys. Res., 109, C09S14, doi:10.1029/2003JC001909.Google Scholar
  37. Napp, J. M. and G. L. Hunt (2001): Anomalous conditions in the south-eastern Bering Sea 1997: linkage among climate, weather, ocean, and biology. Fish. Oceanogr., 10, 61–68.CrossRefGoogle Scholar
  38. Narita, H., M. Sato, S. Tsunogai, M. Murayama, M. Ikehara, T. Nakatsuka, M. Wakatsuchi, N. Harada and Y. Ujiie (2002): Biogenic opal indicating less productive northwestern North Pacific during the glacial ages. Geophys. Res. Lett., 29(15), doi:10.1029/2001GL014320.Google Scholar
  39. Nimmergut, A. and A. Abelmann (2002): Spatial and seasonal changes of radiolarian standing stocks in the Sea of Okhotsk. Deep-Sea Res. I, 49, 463–493.CrossRefGoogle Scholar
  40. Ohshima, K. I., M. Wakatsuchi, Y. Fukamachi and G. Mizuta (2002): Near-surface circulation and tidal currents of the Sea of Okhotsk observed with the satellite-tracked drifters. J. Geophys. Res., 107, 3195, doi: 10.1029/2001JC001005.CrossRefGoogle Scholar
  41. Ohshima, K. I., D. Shimizu, M. Itoh, G. Mizuta, Y. Fukamachi, S. C. Riser and M. Wakatsuchi (2004): Sverdrup balance and the cyclonic gyre in the Sea of Okhotsk. J. Phys. Oceanogr., 34, 513–525.CrossRefGoogle Scholar
  42. Okazaki, Y., K. Takahashi, H. Yoshitani, T. Nakatsuka, M. Ikehara and M. Wakatsuchi (2003a): Radiolarians under the seasonally sea-ice covered conditions in the Okhotsk Sea: flux and their implications for paleoceanography. Mar. Micropaleontol., 49, 195–230.CrossRefGoogle Scholar
  43. Okazaki, Y., K. Takahashi, T. Nakatsuka and M. C. Honda (2003b): The production scheme of Cycladophora davisiana (Radiolaria) in the Okhotsk Sea and the northwestern North Pacific: implication for the paleoceanographic conditions during the glacials in the high latitude oceans. Geophys. Res. Lett., 30(18), 1939, doi:10.1029/2003GL018070.CrossRefGoogle Scholar
  44. Okazaki, Y., K. Takahashi, K. Katsuki, A. Ono, J. Hori, T. Sakamoto, M. Uchida, Y. Shibata, M. Ikehara and K. Aoki (2005): Late Quaternary paleoceanographic changes in the southwestern part of the Okhotsk Sea: Based on analyses of geochemical, radiolarian, and diatom records. Deep-Sea Res. II, 52, 2332–2350.CrossRefGoogle Scholar
  45. Onodera, J., K. Takahashi and M. C. Honda (2005): Pelagic and coastal diatom fluxes and the environmental changes in the northwestern North Pacific during December 1997–May 2000. Deep-Sea Res. II, 52, 2218–2239.CrossRefGoogle Scholar
  46. Ourisson, G., M. Rohmer and K. Poralla (1987): Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu. Rev. Microbiol., 41, 301–333.CrossRefGoogle Scholar
  47. Passow, U. (2002): Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr., 55, 287–333.CrossRefGoogle Scholar
  48. Saitoh, S., M. Kishino, H. Kiyofuji, S. Taguchi and M. Takahashi (1996): Seasonal variability of phytoplankton pigment concentration in the Okhotsk Sea. Bull. Remote Sensing Soc. Japan, 16, 86–92.Google Scholar
  49. Sakamoto, T., M. Ikehara, K. Aoki, K. Iijima, N. Kimura, T. Nakatsuka and M. Wakatsuchi (2005): Ice-rafted debris (IRD)-based sea-ice expansion events during the past 100 kyrs in the Okhotsk Sea. Deep-Sea Res. II, 52, 2275–2301.CrossRefGoogle Scholar
  50. Seki, O., K. Kawamura, T. Nakatsuka, K. Ohnishi, M. Ikehara and M. Wakatsuchi (2003): Sediment core profiles of long-chain n-alkanes in the Sea of Okhotsk: Enhanced transport of terrestrial organic matter from the last deglaciation to the early Holocene. Geophys. Res. Lett., 30(1), 1001, doi:10.1029/2001GL014464.CrossRefGoogle Scholar
  51. Seki, O., M. Ikehara, K. Kawamura, T. Nakatsuka, K. Ohnishi, M. Wakatsuchi, H. Narita and T. Sakamoto (2004a): Reconstruction of paleoproductivity in the Sea of Okhotsk over the last 30 kyr. Paleoceanogr., 19, PA1016, doi:10.1029/2002PA000808.Google Scholar
  52. Seki, O., K. Kawamura, M. Ikehara, T. Nakatsuka and T. Oba (2004b): Variation of alkenone sea surface temperature in the Sea of Okhotsk over the last 85 kyrs. Org. Geochem., 35, 347–354.CrossRefGoogle Scholar
  53. Shiga, K. and I. Koizumi (2000): Latest Quaternary oceanographic changes in the Okhotsk Sea based on diatom records. Mar. Micropaleontol., 38, 91–117.CrossRefGoogle Scholar
  54. Smetacek, V. (1985): Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Mar. Biol., 84, 239–251.CrossRefGoogle Scholar
  55. Sorokin, Y. I. and P. Y. Sorokin (1999): Production in the Sea of Okhotsk. J. Plankton Res., 21, 201–230.CrossRefGoogle Scholar
  56. Sorokin, Y. I. and P. Y. Sorokin (2002): Microplankton and primary production in the Sea of Okhotsk in summer 1994. J. Plankton Res., 24, 453–470.CrossRefGoogle Scholar
  57. Talley, L. D. (1991): An Okhotsk Sea water anomaly: implications for ventilation in the North Pacific. Deep-Sea Res., 38, S171–S190.Google Scholar
  58. Ternois, Y., K. Kawamura, L. D. Keigwin, N. Ohkouchi and T. Nakatsuka (2001): A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27,000 years. Geochim. Cosmochim. Acta, 65, 791–802.CrossRefGoogle Scholar
  59. Townsent, D. W., M. D. Keller, P. M. Holligan, S. G. Ackleson and W. L. Balch (1994): Blooms of the coccolithophore Emiliania huxleyi with respect to hydrography in the Gulf of Maine. Cont. Shelf Res., 14, 979–1000.CrossRefGoogle Scholar
  60. Watanabe, T. and M. Wakatsuchi (1998): Formation of 26.8–26.9σθ water in the Kuril Basin of the Sea of Okhotsk as a possible origin of North Pacific Intermediate Water. J. Geophys. Res., 103, 2849–2865.CrossRefGoogle Scholar
  61. Wong, C. S., R. J. Matear, H. J. Freeland, F. A. Whitney and A. S. Bychkov (1998): WOCE line P1W in the Sea of Okhotsk 2. CFCs and the formation rate of intermediate water. J. Geophys. Res., 103, 15625–15642.Google Scholar
  62. Yasuda, I. (1997): The origin of the North Pacific Intermediate Water. J. Geophys. Res., 102, 893–909.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan/TERRAPUB/Springer 2006

Authors and Affiliations

  • Yusuke Okazaki
    • 1
  • Osamu Seki
    • 2
  • Takeshi Nakatsuka
    • 3
  • Tatsuhiko Sakamoto
    • 4
  • Minoru Ikehara
    • 5
  • Kozo Takahashi
    • 6
  1. 1.Institute of Observational Research for Global ChangeJapan Agency for Marine-Earth Science and TechnologyNatsushima-cho, YokosukaJapan
  2. 2.Graduate School of Environmental ScienceHokkaido UniversityKita-ku, SapporoJapan
  3. 3.Institute of Low Temperature ScienceHokkaido UniversityKita-ku, SapporoJapan
  4. 4.Institute for Research on Earth EvolutionJapan Agency for Marine-Earth Science and TechnologyNatsushima-cho, YokosukaJapan
  5. 5.Center for Advanced Marine Core ResearchKochi UniversityMonobe, NankokuJapan
  6. 6.Department of Earth and Planetary Sciences, Graduate School of SciencesKyushu UniversityHakozaki, Higashi-ku, FukuokaJapan

Personalised recommendations