Journal of Oceanography

, Volume 62, Issue 3, pp 331–337

Retrieval of chlorophyll-a concentration via linear combination of ADEOS-II Global Imager data

  • Robert Frouin
  • Pierre-Yves Deschamps
  • Lydwine Gross-Colzy
  • Hiroshi Murakami
  • Takashi Y. Nakajima
ADEOS-II Ocean: Advanced Earth Observing Satellite-II Ocean

Abstract

Top-of-atmosphere reflectance measured above the ocean in the visible and near infrared, after correction for molecular scattering, may be linearly combined to retrieve surface chlorophyll-a abundance directly, without explicit correction for aerosol scattering and absorption. The coefficients of the linear combination minimize the perturbing effects, which are modeled by a polynomial, and they do not depend on geometry. The technique has been developed for Global Imager (GLI) spectral bands centered at 443, 565, 667, and 866 nm, but it is applicable to other sets of spectral bands. Theoretical performance is evaluated from radiation-transfer simulations for a wide range of geophysical and angular conditions. Using a polynomial with exponents of −2, −1, and 0 to determine the coefficients, the residual influence of the atmosphere on the linear combination is within ±0.001 in most cases, allowing chlorophyll-a abundance to be retrieved with a root-mean-squared (RMS) error of 8.4% in the range 0.03–3 mgm−3. Application of the method to simulated GLI imagery shows that estimated and actual chlorophyll-a abundance are in agreement, with an average RMS difference of 32.1% and an average bias of −2.2% (slightly lower estimated values). The advantage of the method resides in its simplicity, flexibility, and rapidity of execution. Knowledge of aerosol amount and type is avoided. There is no need for look-up tables of aerosol optical properties. Accuracy is adequate, but depends on the polynomial representation of the perturbing effects and on the bio-optical model selected to relate the linear combination to chlorophyll-a abundance. The sensitivity of the linear combination to chlorophyll-a abundance can be optimized, and the method can be extended to the retrieval of other bio-optical variables.

Keywords

Ocean color remote sensing aerosols atmospheric correction chlorophyll 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. André, J.-M. and A. Morel (1991): Atmospheric corrections and interpretation of marine radiances in CZCS imagery, revisited. Oceanolog. Acta, 14, 3–22.Google Scholar
  2. Antoine, D. and A. Morel (1999): A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones. Int. J. Remote Sens., 20, 1875–1916.CrossRefGoogle Scholar
  3. Chomko, R. and H. R. Gordon (1998): Atmospheric correction of ocean color imagery: use of the Junge power-law aerosol size distribution with variable refractive index to handle aerosol absorption. Appl. Opt., 37, 5560–5572.Google Scholar
  4. Fraser, R. S., S. Mattoo, E.-N. Yeh and C. R. McClain (1997): Algorithm for atmospheric and glint corrections of satellite measurements of ocean pigment. J. Geophys. Res., 102, 17107–17118.Google Scholar
  5. Fukushima, H., A. Higurashi, Y. Mitomi, T. Nakajima, T. Noguchi, T. Tanaka and M. Toratani (1998): Correction of atmospheric effects on ADEOS/OCTS ocean color data: Algorithm description and evaluation of its performance. J. Oceanogr., 54, 417–430.Google Scholar
  6. Gao, B.-C., M. J. Montes, Z. Ahmad and C. O. Davis (2000): Atmospheric correction algorithm for hyper-spectral remote sensing of ocean color from space. Appl. Opt., 39, 887–896.Google Scholar
  7. Gordon, H. R. (1978): Removal of atmospheric effects from satellite imagery of the oceans. Appl. Opt., 17, 1631–1636.Google Scholar
  8. Gordon, H. R. (1997): Atmospheric correction of ocean color imagery in the Earth Observing System era. J. Geophys. Res., 102, 17107–17118.Google Scholar
  9. Gordon, H. R. and M. Wang (1994): Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm. Appl. Opt., 33, 443–452.CrossRefGoogle Scholar
  10. Gordon, H. R., T. Du and T. Zhang (1997): Remote sensing of ocean color and aerosol properties: resolving the issue of aerosol absorption. Appl. Opt., 36, 8670–8684.Google Scholar
  11. Jolliffe, I. T. (1986): Principal Component Analysis. Springer-Verlag, New York, 271 pp.Google Scholar
  12. Land, P. E. and J. D. Haigh (1996): Atmospheric correction over case 2waters using an iterative fitting algorithm. Appl. Opt., 35, 5443–5451.CrossRefGoogle Scholar
  13. Morel, A. and S. Maritorena (2001): Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res., 106, 7163–7180.CrossRefGoogle Scholar
  14. Nakajima, T. and M. Tanaka (1988): Matrix formulations of the transfer of solar radiation in a plane-parallel scattering atmosphere. J. Quant. Spect. Rad. Transfer, 40, 51–69.CrossRefGoogle Scholar
  15. Nakajima, T., Y. Awaya, M. Kishino, T. Ohishi, G. Saitou, A. Uchiyama, T. Y. Nakajima, M. Nakajima and T. Uesugi (1997): The current status of the ADEOS-II/GLI mission. p. 183–190. In Advanced and Next-Generation Satellites II, ed. by H. Fujisada, G. Calamai and M. N. Sweeting, SPIE 2957.Google Scholar
  16. Nakajima, T. Y., T. Nakajima, M. Nakajima, H. Fukushima, M. Kuji, A. Uchiyama and M. Kishino (1998): Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations. Appl. Opt., 37, 3149–3163.Google Scholar
  17. Tanaka, A., T. Oishi, M. Kishino and R. Doerffer (1998): Application of the neural network to OCTS data. In Proceedings of Ocean Optics XIV, ed. by S. G. Ackleson and J. Campbell, Office of Naval Research, Washington, D.C.Google Scholar
  18. Tanaka, A., M. Kishino, R. Doerffer, H. Shiller, T. Oishi and T. Kubota (2004): Development of a neural network algorithm for retrieving concentrations of chlorophyll, suspended matter, and yellow substance from radiance data of the Ocean Color and Temperature Scanner. J. Oceanogr., 60, 519–530.CrossRefGoogle Scholar
  19. Tanré, D., M. Herman, P.-Y. Deschamps and A. DeLeffe (1979): Atmospheric modeling of space measurements of ground reflectances, including bi-directional properties. Appl. Opt., 18, 3587–3594.CrossRefGoogle Scholar
  20. Vermote, E. F., D. Tanré, J.-L. Deuzé, M. Herman and J.-J. Morcrette (1997): Second simulation of the satellite signal in the solar spectrum: An overview. IEEE Trans. Geosci. Remote Sens., 35, 675–686.CrossRefGoogle Scholar
  21. Viollier, M., D. Tanré and P.-Y. Deschamps (1980): An algorithm for remote sensing of water color from space. Boundary Layer Meteor., 18, 247–267.CrossRefGoogle Scholar
  22. Zhao, F. and T. Nakajima (1997): Simultaneous determination of water reflectance and aerosol optical thickness from Coastal Zone Color Scanner measurements. Appl. Opt., 36, 6949–6956.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan/TERRAPUB/Springer 2006

Authors and Affiliations

  • Robert Frouin
    • 1
  • Pierre-Yves Deschamps
    • 2
  • Lydwine Gross-Colzy
    • 1
  • Hiroshi Murakami
    • 3
  • Takashi Y. Nakajima
    • 4
  1. 1.Scripps Institution of OceanographyUniversity of California San DiegoLa JollaU.S.A.
  2. 2.Laboratoire d’Optique AtmosphériqueUniversité des Sciences de LilleFrance
  3. 3.Earth Observation Research CenterJapan Aerospace Exploration AgencyHarumi, Chuo-ku, TokyoJapan
  4. 4.Department of Network and Computer EngineeringTokai UniversityTomiyaga, Shibuya-ku, TokyoJapan

Personalised recommendations