Advertisement

Journal of Oceanography

, Volume 62, Issue 2, pp 185–196 | Cite as

Lethality of increasing CO2 levels on deep-sea copepods in the western North Pacific

  • Yuji Watanabe
  • Atsushi Yamaguchi
  • Hiroshi Ishida
  • Takashi Harimoto
  • Shinya Suzuki
  • Yoshio Sekido
  • Tsutomu Ikeda
  • Yoshihisa Shirayama
  • Masayuki Mac Takahashi
  • Takashi Ohsumi
  • Joji Ishizaka
Article

Abstract

The first CO2 exposure experiments on several species of pelagic copepods inhabiting surface and deep layers in the western North Pacific were conducted. Living organisms were collected from two layers between the surface and 1,500 m between latitudes of 11 and 44°N, and they were exposed aboard ship to various pCO2 up to about 98,000 μatm. Mortality of copepods from both shallow and deep layers in subarctic to subtropical regions increased with increasing pCO2 and exposure time. Deep-living copepods showed higher tolerance to pCO2 than shallow-living copepods. Furthermore, deep-living copepods from subarctic and transitional regions had higher tolerances than the subtropical copepods. The higher tolerances of the deep-living copepods from subarctic and transitional regions may be due to the adaptation to the natural pCO2 conditions in the subarctic ocean.

Keywords

Lethality pCO2 epipelagic mesopelagic copepod pH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auerbach, D. I., Caulfield, J. A., Adams, E. E. and Herzog, H. J. (1997): Impacts of ocean CO2 disposal on marine life: I. A toxicological assessment integrating constant-concentration laboratory assay data with variable-concentration field exposure. Environ. Mode. Assess., 2, 333–343.Google Scholar
  2. Barry, J. P., K. R. Buck, C. F. Lover, L. Kuhnz, P. J. Whaling, E. T. Peltzer, P. Walz and P. G. Brewer (2004): Effects of direct ocean CO2 injection on deep-sea meiofauna. J. Oceanogr., 60, 759–766.CrossRefGoogle Scholar
  3. Brodsky, K. A. (1950): Calanoida of the far eastern seas and polar basin of the USSR. Israel Program for Scientific Translations, Jerusalem, 1967, 1–440.Google Scholar
  4. Carman, K. R., D. Thistle, J. W. Fleeger and J. P. Brewer (2004): Influence of introduced CO2 on deep-sea metazoan meiofauna. J. Oceanogr., 60, 767–772.CrossRefGoogle Scholar
  5. Chihara, M. and M. Murano (eds.) (1997): An Illustrated Guide to Marine Plankton in Japan. Tokai University Press, Tokyo, 1574 pp.Google Scholar
  6. Drange, H., G. Alendal and O. M. Johannessen (2001): Ocean release of fossil fuel CO2: A case study. Geophys. Res. Lett., 28, 2637–2640.CrossRefGoogle Scholar
  7. Handa, N. and T. Ohsumi (eds.) (1995): Direct Ocean Disposal of Carbon Dioxide. TERRAPUB, Tokyo, 274 pp.Google Scholar
  8. Haugan, P. M. and H. Drange (1992): Sequestration of CO2 in the deep ocean by shallow injection. Nature, 357, 318–320.CrossRefGoogle Scholar
  9. Herzog, H. J. and J. Edmond (1994): Disposing of CO2 in the Ocean. Spec. Publ.-R. Soc. Chem., 153, 329–337.Google Scholar
  10. Hoffert, M. I., Y.-C. Wey, A. J. Callegari and W. S. Broecker (1979): Atmospheric response to deep-sea injections of fossil-fuel carbon dioxide. Climatic Change, 2, 53–68.CrossRefGoogle Scholar
  11. Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell and C. A. Johnson (eds.) (2001): Climate Change 2001: The Scientific Basis. Press Syndicate of the University of Cambridge, Cambridge, 881 pp.Google Scholar
  12. Ishida, H., Y. Watanabe, T. Fukuhara, S. Kaneko, K. Fukasawa and Y. Shirayama (2005): In situ enclosure experiment using a benthic chamber system to assess the effect of high concentration of CO2 on deep-sea benthic communities. J. Oceanogr., 61, 835–843.CrossRefGoogle Scholar
  13. Ishimatsu, A., T. Kikkawa, M. Hayashi, K. Lee and J. Kita (2004): Effects of CO2 on marine fish: larvae and adults. J. Oceanogr., 60, 731–741.CrossRefGoogle Scholar
  14. Ishizaka, J. (1999): Biological impacts: structure of marine ecosystem and impact assessment. p. 8–14. In Proceedings of the 2nd International Symposium on Ocean Sequestration of Carbon Dioxide, ed. by H. Matsukawa, New Energy and Industrial Technology Development Organization, Tokyo.Google Scholar
  15. Kikkawa, T., A. Ishimatsu and J. Kita (2003): Acute CO2 tolerance during the early developmental stages of four marine teleosts. Environ. Toxicol., 18, 375–382.CrossRefGoogle Scholar
  16. Kikkawa, T. A., J. Kita and A. Ishimatsu (2004): Comparison of the lethal effect of CO2 and acidification on red sea bream (Pagrus major) during the early developmental stages. Mar. Pollut. Bull., 48, 108–110.Google Scholar
  17. Kobari, T. and T. Ikeda (1999): Vertical distribution, population structure and life cycle of Neocalanus cristatus (Crustacea: Copepoda) in the Oyashio region, with notes on its regional variations. Mar. Biol., 134, 683–696.CrossRefGoogle Scholar
  18. Koppelmann, R. and H. Weikert (1992): Full-depth zooplankton profiles over the deep bathyal of the NE Atlantic. Mar. Ecol. Prog. Ser., 82, 263–272.Google Scholar
  19. Kurihara, H., S. Shimode and Y. Shirayama (2004): Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. J. Oceanogr., 60, 743–750.CrossRefGoogle Scholar
  20. Lackner, L. S. (2003): A guide to CO2 sequestration. Science, 300, 1677–1678.CrossRefGoogle Scholar
  21. Lewis, E. and D. Wallace (1997): Program Developed for CO 2 System Calculations. Brookhaven National Laboratory, New York.Google Scholar
  22. Macleod, J. C. and E. Pessah (1973): Temperature effects on mercury accumulation, toxicity, and metabolic rate in rainbow trout (Salmo gairdneri). J. Fish. Res. Board. Can., 30, 485–492.Google Scholar
  23. Mauchline, J. (1998): The Biology of Calanoid Copepods. Advances in Marine Biology Volume 53. Academic Press, San Diego, 710 pp.Google Scholar
  24. Millero, F. J. (1996): Chemical Oceanography. 2nd ed., CRC Press, Boca Raton, 469 pp.Google Scholar
  25. Nagata, T., H. Fukuda, R. Fukuda and I. Koike (2000): Bacterioplankton distribution and production in deep Pacific waters: Large-scale geographic variations and possible coupling with sinking particle fluxes. Limnol. Oceanogr., 45, 426–435.Google Scholar
  26. Omori, M., C. P. Norman and T. Ikeda (1998): Oceanic disposal of CO2: potential effects on deep-sea plankton and micronekton—a review. Plankton Biol. Ecol., 45, 87–99.Google Scholar
  27. Ormerod, B. and Angel, M. (eds.) (1996): Ocean Storage of Carbon Dioxide. Environmental Impact. IEA Greenhouse Gas R&D Programme, Cheltenham, U.K., 131 pp.Google Scholar
  28. Ozaki, M. (1997): CO2 injection and dispersion in mid-ocean depth by moving ship. Waste Manage., 17, 369–373.Google Scholar
  29. Parsons, T. R., M. Takahashi and B. Hargrave (1983): Biological Oceanographic Processes. 3rd ed., Pergamon Press, Oxford, 330 pp.Google Scholar
  30. Pörtner, H. O., M. Langenbuch and A. Reipschläger (2004): Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. J. Oceanogr., 60, 705–718.CrossRefGoogle Scholar
  31. Randall, D., W. Burggren and K. French (1997): Animal Physiology: Mechanisms and Adaptations. W. H. Freeman and Company, New York, 727 pp.Google Scholar
  32. Raymont, J. E. G. (1983): Plankton and Productivity in the Oceans. 2nd edition volume 2 Zooplankton. Pergamon Press Ltd., Oxford, 824 pp.Google Scholar
  33. Riebesell, U. (2004): Effects of CO2 enrichment on marine phytoplankton. J. Oceanogr., 60, 719–729.CrossRefGoogle Scholar
  34. Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe and F. M. M. Morel (2000): Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407, 364–367.Google Scholar
  35. Sakuma, A. (1964): Bioassay: Design and Analysis. University of Tokyo Press, Tokyo, 309 pp. (in Japanese).Google Scholar
  36. Sato, T. and K. Sato (2002): Numerical prediction of the dilution process and its biological impacts in CO2 ocean sequestration. J. Mar. Sci. Tech., 6, 169–180.Google Scholar
  37. Seibel, B. A. and P. J. Walsh (2001): Potential impacts of CO2 injection on deep-sea biota. Science, 294, 319–320.CrossRefGoogle Scholar
  38. Seibel, B. A., E. V. Thuesen, J. J. Childress and L. A. Gorodezky (1997): Decline in pelagic cephalopod metabolism with habitat depth reflects differences in locomotory efficiency. Biol. Bull., 192, 262–278.Google Scholar
  39. Sewell, R. B. S. (1948): The free-swimming planktonic Copepoda. Geographical distribution. Scientific Reports of the John Murray Expedition 1933–34, Zoology, 8, 317–592.Google Scholar
  40. Shirayama, Y. (1997): Biodiversity and biological impact of ocean disposal of carbon dioxide. Waste Manage., 17, 381–384.Google Scholar
  41. Stephan, C. E. (1977): Methods for calculating an LC50. In Aquatic Toxicology and Hazard Evaluation, ed. by F. I. Mayer and J. L. Hamelink, ASTM STP, 634, 65–84, American Society for Testing and Materials.Google Scholar
  42. Takeuchi, K., Y. Fujioka, Y. Kaswasaki and Y. Shirayama (1997): Impacts of high concentration of CO2 on marine organisms; a modification of CO2 ocean sequestration. Energy Conver. Manage., 38, S337–S341.Google Scholar
  43. Tamburri, M. N., E. T. Peltzer, G. E. Friederich, I. Aya, K. Yamane and P. G. Brewer (2000): A field study of the effects of CO2 ocean disposal on mobile deep-sea animals. Mar. Chem., 72, 95–101.CrossRefGoogle Scholar
  44. Terazaki, M. and C. Tomatsu (1997): A vertical multiple opening and closing plankton sampler. J. Adv. Mar. Sci. Tech. Soc., 3, 127–132.Google Scholar
  45. Vinogradov, M. E. (1968): Vertical Distribution of the Oceanic Zooplankton. Nauka, Moskow, 320 pp.Google Scholar
  46. Wakabayashi, M. (2003): Chemical Materials and Ecological Toxicity. Maruzen, Tokyo, 457 pp. (in Japanese).Google Scholar
  47. Yamada, Y. and T. Ikeda (1999): Acute toxicity of lowered pH to some oceanic zooplankton. Plankton Biol. Ecol., 46, 62–67.Google Scholar
  48. Yamaguchi, A., J. Ishizaka and Y. Watanabe (2000): Vertical distribution of plankton community in the western North Pacific Ocean (WEST-COSMIC). Bull. Plankton Soc. Japan, 47, 144–156.Google Scholar
  49. Yamaguchi, A., Y. Watanabe, H. Ishida, T. Harimoto, K. Furusawa, S. Suzuki, J. Ishizaka, T. Ikeda and M. M. Takahashi (2002): Structure and size distribution of plankton communities down to the greater depths in the western North Pacific Ocean. Deep-Sea Res. II, 49, 5513–5529.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Yuji Watanabe
    • 1
    • 2
  • Atsushi Yamaguchi
    • 3
  • Hiroshi Ishida
    • 1
  • Takashi Harimoto
    • 1
  • Shinya Suzuki
    • 1
  • Yoshio Sekido
    • 1
  • Tsutomu Ikeda
    • 3
  • Yoshihisa Shirayama
    • 4
  • Masayuki Mac Takahashi
    • 5
  • Takashi Ohsumi
    • 6
  • Joji Ishizaka
    • 7
  1. 1.The General Environmental Technos Co., Ltd.Azuchimachi, Chuo-ku, OsakaJapan
  2. 2.Graduate School of Marine Science and EngineeringNagasaki UniversityBunkyo-machi, NagasakiJapan
  3. 3.Graduate School of Fisheries SciencesHokkaido UniversityMinato-cho, HakodateJapan
  4. 4.Field Science Education and Research CenterKyoto UniversityShirahama, Nishimuro, WakayamaJapan
  5. 5.Graduate School of Kuroshio SciencesKochi UniversityNangoku, KochiJapan
  6. 6.Research Institute of Innovative Technology for the Earth (RITE)Kizu, Soraku, KyotoJapan
  7. 7.Faculty of FisheriesNagasaki UniversityBunkyo-machi, NagasakiJapan

Personalised recommendations