Journal of Oceanography

, Volume 62, Issue 2, pp 155–170 | Cite as

Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses

  • Masayoshi IshiiEmail author
  • Masahide Kimoto
  • Kenji Sakamoto
  • Sin-Iti Iwasaki


An historical objective analysis of subsurface temperature and salinity was carried out on a monthly basis from 1945 to 2003 using the latest observational databases and a sea surface temperature analysis. In addition, steric sea level changes were mainly examined using outputs of the objective analyses. The objective analysis is a revised version of Ishii et al. and is available at 16 levels in the upper 700 m depth. Artificial errors in the previous analysis during the 1990s have been worked out in the present analysis. The steric sea level computed from the temperature analysis has been verified with tide gauge observations and TOPEX/Poseidon sea surface height data. A correction for crustal movement is applied for tide gauge data along the Japanese coast. The new analysis is suitable for the discussion of global warming. Validation against the tide gauge reveals that the amplitude of thermosteric sea level becomes larger and the agreement improves in comparison with the previous analysis. A substantial part of local sea level rise along the Japanese coast appears to be explained by the thermosteric effect. The thermal expansion averaged in all longitudes from 60°S to 60°N explains at most half of recent sea level rise detected by satellite observation during the last decade. Considerable uncertainties remain in steric sea level, particularly over the southern oceans. Temperature changes within MLD make no effective contribution to steric sea level changes along the Antarctic Circumpolar Current. According to statistics using only reliable profiles of the temperature and salinity analyses, salinity variations are intrinsically important to steric sea level changes in high latitudes and in the Atlantic Ocean. Although data sparseness is severe even in the latest decade, linear trends of global mean thermosteric and halosteric sea level for 1955 to 2003 are estimated to be 0.31 ± 0.07 mm/yr and 0.04 ± 0.01 mm/yr, respectively. These estimates are comparable to those of the former studies.


Temperature analysis salinity analysis steric sea level TOPEX/Poseidon tide gauge crustal movement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antonov, J. I., S. Levitus and T. P. Boyer (2002): Steric sea level variations during 1957–1994: Importance of salinity. J. Geophys. Res., 107(C12), 8013, doi:10.1029/2001JC000964.CrossRefGoogle Scholar
  2. Antonov, J. I., S. Levitus and T. P. Boyer (2005): Thermosteric sea level rise, 1955–2003. Geophys. Res. Lett., 32, L12602, doi:10.1029/2005GL023112.Google Scholar
  3. Boyer, T. P. and S. Levitus (1994): Quality Control and Processing of Historical Oceanographic Temperature, Salinity, and Oxygen Data. NOAA Technical Report NESDIS 81, 64 pp.Google Scholar
  4. Boyer, T. P., M. E. Conkright, J. I. Antonov, O. K. Baranova, H. Garcia, R. Gelfeld, D. Johnson, R. Locarnini, P. Murphy, T. O. Brien, I. Smolyar and C. Stephens (2001): World Ocean Database 2001, Volume 2: Temporal Distribution of Bathythermograph Profiles. NOAA Atlas NESDIS 43, 119 pp., CD-ROM, U.S. Government Printing Office, Washington, D.C.Google Scholar
  5. Boyer, T. P., S. Levitus, J. I. Antonov, R. A. Locarnini and H. E. Garcia (2005): Linear trends in salinity for the World Ocean, 1955–1998. Geophys. Res. Lett., 32, L01604, doi:10.1029/2004GL021791.Google Scholar
  6. Cazenave, A. and R. S. Nerem (2004): Present-day sea level change: observations and cause. Rev. Geophys., 42, RG3001, doi:10.1029/2003RG000139.Google Scholar
  7. Chambers, D. P., S. A. Hayes, J. C. Ries and T. J. Urban (2003): New TOPEX sea state bias models and their effect on global mean sea level. J. Geophys. Res., 108(C10), 3305, doi:10.1029/2003JC001839.CrossRefGoogle Scholar
  8. Church, J., J. M. Gregory, P. Huybrechts, M. Kuhn, K. Lambeck, M. T. Nhuan, D. Qin and P. L. Woodworth (2001): Changes in sea level. In Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. by J. T. Houghton et al., Cambridge Univ. Press, New York.Google Scholar
  9. Conkright, M. E., R. A. Locarnini, H. E. Garcia, T. D. O. Brien, T. P. Boyer, C. Stephens and J. I. Antonov (2001): World Ocean Atlas 2001: Objective Analyses, Data Statistics, and Figures. NOAA Atlas NESDIS 42, 17 pp., CD-ROM, U.S. Government Printing Office, Washington, D.C.Google Scholar
  10. Derber, J. C. and A. Rosati (1989): A global oceanic data assimilation technique. J. Phys. Oceanogr., 19, 1333–1347.CrossRefGoogle Scholar
  11. Douglas, B. C. and W. R. Peltier (2002): The puzzle of global sea level rise. Phys. Today, 55, 35–40.Google Scholar
  12. Ghil, M. and P. Malanotte-Rizzoli (1991): Data Assimilation in Meteorology and Oceanography. Advances in GEOPHYSICS, Vol. 33, Academic Press, p. 141–266.Google Scholar
  13. Gill, A. E. (1982): Atmosphere-Ocean Dynamics. International Geophysics Series, Academic Press.Google Scholar
  14. Gille, S. (2002): Warming of the southern ocean since the 1950s. Science, 295, 1275–1277.CrossRefGoogle Scholar
  15. Hanawa, K., P. Raul, R. Bailey, A. Sy and M. Szabados (1995): A new depth-time equation for Sippican or TSK T-7, T-6, and T-4 expendable bathythermographs (XBTs). Deep-Ses Res., 42, 1423–1451.Google Scholar
  16. Hansen, D. V. and W. C. Thacker (1999): Estimation of salinity profiles in the upper ocean. J. Geophys. Res., 104(C4), 7921–7933.CrossRefGoogle Scholar
  17. Ishii, M., M. Kimoto and M. Kachi (2003): Historical ocean subsurface temperature analysis with error estimates. Mon. Wea. Rev., 131, 51–73.Google Scholar
  18. Ishii, M., A. Shouji, S. Sugimoto and T. Matsumoto (2005): Objective analyses of SST and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol., 25, 865–879.Google Scholar
  19. Kuragano, T. and A. Shibata (1997): Sea surface dynamic height of the Pacific Ocean derived from TOPEX/POSEIDON altimeter data: Calculation method and accuracy. J. Oceanogr., 53, 585–599.Google Scholar
  20. Levitus, S. (1982): Climatological Atlas of The World Ocean. NOAA Prof. Paper No. 13, 173 pp., U.S. Government Printing Office, Washington, D.C.Google Scholar
  21. Levitus, S. (1989): Interpentadal variability of temperature and salinity at intermediate depths of the north Atlantic Ocean, 1970–74 versus 1955–1959. J. Geophys. Res., 94(C5), 6091–6131.Google Scholar
  22. Levitus, S., C. Stephens, J. I. Antonov and T. P. Boyer (2000): Yearly and Year—Season Upper Ocean Temperature Anomaly Fields, 1948–1998. NOAA Atlas NESDIS 40 (available from
  23. Levitus, S., J. I. Antonov, T. P. Boyer, H. E. Garcia and R. A. Locarnini (2005a): Linear trends of zonally averaged thermosteric, halosteric, and total seteric sea level for individual ocean basins and the world ocean, (1955–1959)–(1994–1998). Geophys. Res. Lett., 32, L16601, doi:10.1029/2005GL023761.Google Scholar
  24. Levitus, S., J. I. Antonov and T. P. Boyer (2005b): Warming of the world ocean, 1955–2003. Geophys. Res. Lett., 32, L02604, doi:10.1029/2004GL021592.Google Scholar
  25. Lombard, A., A. Cazenave, P.-Y. Le Traon and M. Ishii (2005): Comtribution of thermal expansion to present-day sea-level change revisited. Global and Planetary Change, 47, 1–16.CrossRefGoogle Scholar
  26. Maes, C. and D. Behringer (2000): Using satellite-derived sea level and temperature profiles for determining the salinity variability: A new approach. J. Geophys. Res., 105(C4), 8537-8457.Google Scholar
  27. Peltier, W. R. (2001): Global isostatic adjustment and modern instrumental records of relative sea level history, Chapter 4. In Sea Level Rise: History and Consequences, ed. by B. C. Douglas, M. S. Kearney and S. P. Leatherman, Academic Press, New York.Google Scholar
  28. Reynolds, R. W. and T. M. Smith (1994): Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929–948.CrossRefGoogle Scholar
  29. Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes and W. Wang (2002): An improved in-situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625.CrossRefGoogle Scholar
  30. Stephens, C., S. Levitus, J. I. Antonov and T. P. Boyer (2001): The Pacific regime shift. Geophys. Res. Lett., 28, 3721–3724.CrossRefGoogle Scholar
  31. The Argo Science Team (1999): ARGO: The global array profiling floats. In Proceedings of the OOPC/UDP Ocean Obs Conference, Saint Raphaël, France, 18–22 October, 1999, 12 pp.Google Scholar
  32. Vossepoel, F. C., R. W. Reynolds and L. Miller (1999): Use of sea level observations to estimate salinity variability in the tropical Pacific. J. Atmos. Ocean. Tech., 16, 1401–1415.Google Scholar
  33. White, W. B. (1995): Design of a global observing system for gyre-scale upper ocean temperature variability. Prog. Oceanogr., 36, 169–217.CrossRefGoogle Scholar
  34. Willis, J. K., D. Roemmich and B. Cornuelle (2004): Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales. J. Geophys. Res., 109, C12036, doi: 10.1029/2003JC002260.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Masayoshi Ishii
    • 1
    Email author
  • Masahide Kimoto
    • 2
  • Kenji Sakamoto
    • 3
  • Sin-Iti Iwasaki
    • 4
  1. 1.Frontier Research Center for Global ChangeJapan Agency for Marine-Earth Science and TechnologyYokohamaJapan
  2. 2.Center for Climate System ResearchUniversity of TokyoKashiwaJapan
  3. 3.Climate Prediction DivisionJapan Meteorological AgencyTokyoJapan
  4. 4.National Research Institute for Earth Science and Disaster PreventionTsukubaJapan

Personalised recommendations