Journal of Oceanography

, Volume 61, Issue 4, pp 775–781 | Cite as

Long-term Sensor Drift Found in Recovered Argo Profiling Floats

Short Contribution

Abstract

We recovered three Argo profiling floats after 2 to 2.5 years of operation, and recalibrated their temperature, conductivity, and pressure sensors. The results demonstrate that these floats exhibited a significant drift in salinity of −0.0074 to −0.0125, primarily due to the conductivity sensor drift. Combined with the recalibration result for another previously recovered float, the indication is that the negative salinity drift increases nearly in proportion to the operating period of floats. The increasing rate is −0.0041 (±0.0015) year−1, which yields a salinity drift of −0.016 (±0.006) for the expected float lifetime of four years. The present result suggests that reducing the float surfacing time would improve the accuracy of the salinity measurements.

Keywords

Argo profiling float sensor drift 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argo Science Team (2000): Report of the Argo Science Team 2nd Meeting (AST-2) March 7–9, 2000, Southampton Oceanography Centre, Southampton, U.K.Google Scholar
  2. Argo Science Team (2001): Argo: The global array of profiling floats. p. 248–258. In Observing the Oceans in the 21st Century, ed. by C. J. Koblinsky and N. R. Smith, GODAE Project Office, Bureau of Meteorology, Melbourne.Google Scholar
  3. Argo Science Team (2002): Report of the Argo Science Team 4th Meeting (AST-4) March 12–14, 2002, CSIRO Division of Marine Sciences, Hobart, Tasmania, Australia.Google Scholar
  4. Bacon, S., L. R. Centurioni and W. J. Gould (2001): The evaluation of salinity measurements from PALACE floats. J. Atmos. Ocean. Tech., 18, 1258–1266.CrossRefGoogle Scholar
  5. Davis, R. E. (1998): Autonomous floats in WOCE. Int. WOCE Newsletter, 30, 3–6.Google Scholar
  6. Inoue, A., M. Miyazaki, K. Izawa, K. Ando, Y. Takatsuki and K. Mizuno (2002): Stability of water temperature in the conductivity and temperature calibration system and result of calibration experiments. ARGO Technical Report FY 2001, JAMSTEC, 9–17.Google Scholar
  7. Iwasaka, N., T. Suga, K. Takeuchi, K. Mizuno, Y. Takatsuki, K. Ando, T. Kobayashi, E. Oka, Y. Ichikawa, M. Miyazaki, H. Matsuura, K. Izawa, C.-S. Yang, N. Shikama and M. Aoshima (2003): Pre-Japan-ARGO: Experimental observation of upper and middle layers south of the Kuroshio Extension region using profiling floats. J. Oceanogr., 59, 119–127.CrossRefGoogle Scholar
  8. Johnson, G. C., P. J. Stabeno and S. C. Riser (2004): The Bering slope current system revisited. J. Phys. Oceanogr., 34, 384–398.CrossRefGoogle Scholar
  9. Kobayashi, T. and S. Minato (2005): Importance of reference dataset improvements for Argo delayed-mode quality control. J. Oceanogr. (accepted).Google Scholar
  10. Ohno, Y., T. Kobayashi, N. Iwasaka and T. Suga (2004): The mixed layer depth in the North Pacific as detected by the Argo floats. Geophys. Res. Lett., 31, L11306, doi:10.1029/2004GL019576.CrossRefGoogle Scholar
  11. Oka, E. and K. Ando (2004): Stability of temperature and conductivity sensors of Argo profiling floats. J. Oceanogr., 60, 253–258.CrossRefGoogle Scholar
  12. Oka, E. and T. Suga (2003): Formation region of North Pacific subtropical mode water in the late winter of 2003. Geophys. Res. Lett., 30(23), 2205, doi:10.1029/2003GL018581.CrossRefGoogle Scholar
  13. Oka, E., K. Izawa, A. Inoue, K. Ando, N. Shikama, K. Mizuno, K. Suehiro and K. Takeuchi (2002): Is retrieve of Argo floats possible? JAMSTECR (Report of Japan Marine Science and Technology Center), 46, 147–155 (in Japanese with English abstract and figure captions).Google Scholar
  14. Riser, S. and D. Swift (2005): Long-term measurements of salinity from profiling floats. J. Atmos. Ocean. Tech. (submitted).Google Scholar
  15. Sato, K., T. Suga and K. Hanawa (2004): Barrier layer in the North Pacific subtropical gyre. Geophys. Res. Lett., 31, L05301, doi:10.1029/2003GL018590.CrossRefGoogle Scholar
  16. Uehara, H., T. Suga, K. Hanawa and N. Shikama (2003): A role of eddies in formation and transport of North Pacific Subtropical Mode Water. Geophys. Res. Lett., 30(13), 1705, doi:10.1029/2003GL017542.CrossRefGoogle Scholar
  17. Ueki, I. and T. Nagahama (2005): Evaluation of property change of pressure sensor installed on TRITON buoys. JAMSTEC Report of Research and Development, 1, 51–55.Google Scholar
  18. Wong, A. P. S. and G. C. Johnson (2003): South Pacific eastern subtropical mode water. J. Phys. Oceanogr., 33, 1493–1509.CrossRefGoogle Scholar
  19. Wong, A. P. S., G. C. Johnson and W. B. Owens (2003): Delayed-mode calibration of autonomous CTD profiling float salinity data by theta-S climatology. J. Atmos. Ocean. Tech., 20, 308–318.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institution of Observational Research for Global ChangeJapan Agency for Marine-Earth Science and TechnologyNatushima-cho, Yokosuka, KanagawaJapan

Personalised recommendations