Journal of Oceanography

, Volume 61, Issue 3, pp 379–388 | Cite as

Diel Patterns in Chlorophyll a Specific Absorption Coefficient and Absorption Efficiency Factor of Picoplankton

  • Nobuaki OhiEmail author
  • Hiroaki Saito
  • Satoru Taguchi


Diel patterns in the chlorophyll a specific absorption coefficient of surface picoplankton, a*pico (γ) (m2·[mg chlorophyll a]−1), were studied at 7 stations under daily cycle of in situ light condition in the western subarctic Pacific and Japan Sea. All the data were normalized by dividing the anomaly with daily averaged a*pico (γ). Opposite diel patterns were observed for the normalized a*pico (443) and a*pico (675) with maximum toward dawn or dusk and minimum toward midday at 4 stations under low-irradiance (LI) conditions and vice versa at 3 stations under high-irradiance (HI) conditions. The absorption efficiency factors at red absorption peak, Qa (675), were determined by reconstruction with intracellular chlorophyll a concentration and cell diameter. The normalized Qa (675) also showed diel pattern with maximum toward midday and minimum toward dawn or dusk under LI. The diel pattern in a*pico (675) and Qa (675) were primarily caused by changes in intracellular chlorophyll a concentration due to photoadaptation under LI. The diel pattern in a*pico (443) was influenced by pigmentation, as recognized by blue to red ratio [a*pico (443)/a*pico (675)] under HI. This study proposed that the opposite diel pattern in a*pico (γ) might occur for a wide range of algal species. The results presented here have important consequences for the interpretation of diel variations in optical properties observed in the open ocean.


Optical properties absorption diurnal variations package effect picoplankton 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antoine, D., J. M. Andre and A. Morel (1996): Oceanic primary production, 2, Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochem. Cycles, 10, 57–69.CrossRefGoogle Scholar
  2. Bidigare, R. R., M. E. Ondrusek, J. H. Marrow and D. A. Kiefer (1990): In vivo absorption properties of algal pigments. p. 290–302. In Ocean Optics X, ed. by R. Spinrad, SPIE, Bellingham, Washington.CrossRefGoogle Scholar
  3. Bratbak, G. (1993): Microscope methods for measuring bacterial biovolume: epifluorescence microscopy, scanning electron microscopy and transmission electron microscopy: p. 309–317. In Handbook of Methods in Aquatic Microbial Ecology, ed. by P. F. Kemp, B. F. Sherr and J. J. Cole, CRC, Boca Ratonn, FL.Google Scholar
  4. Bricaud, A., K. Allali, A. Morel, D. Marie, M. J. W. Veldhuis, F. Partensky and D. Vaulot (1999): Divinyl chlorophyll a-specific absorption coefficients and absorption efficiency factors for Prochlorococcus marinus: kinetics of photoacclimation. Mar. Ecol. Prog. Ser., 188, 21–32.CrossRefGoogle Scholar
  5. Ciotti, A. M., J. J. Cullen and M. R. Lewis (1999): A semi-analytical model of the influence of phytoplankton community structure on the relationship between light attenuation and ocean color. J. Geophys. Res., 104, 1559–1578.CrossRefGoogle Scholar
  6. Claustre, H., A. Bricaud, M. Babin, F. Bruyant, L. Guillou, F. L. Gall, D. Marie and F. Partensky (2002): Diel variations in Prochlorococcus optical properties. Limnol. Oceanogr., 47, 1637–1647.CrossRefGoogle Scholar
  7. Dandonneau, Y. and J. Neveux (1997): Diel variations of in-vivo fluoroesence in the eastern equatorial Pacific: an unvarying pattern. Deep-Sea Res. II, 44, 1869–1880.CrossRefGoogle Scholar
  8. Demers, S., S. Roy, R. Gagnon and C. Vignault (1991): Rapid light-induced changes in cell fluorescence and in xanthophyll-cycle pigments of Alexandrium excavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillariophyceae): a photo-protection mechanism. Mar. Ecol. Prog. Ser., 76, 185–193.CrossRefGoogle Scholar
  9. Dupouy, C., J. Neveux and J. M. Andre (1997): Spectral absorption coefficient of photosynthetically active pigments in the equatorial Pacific Ocean (165°E-150°W). Deep-Sea Res. II, 44, 1881–1906.CrossRefGoogle Scholar
  10. DuRand, M. D. and R. J. Olson (1996): Contribution of phytoplankton light scattering and cell concentration changes to diel variations in beam attenuation in the equatorial Pacific from flow cytometric measurements of pico-, ultra-and nanoplankton. Deep-Sea Res. II, 43, 891–906.CrossRefGoogle Scholar
  11. DuRand, M. D. and R. J. Olson (1998): Diel patterns in optical properties of the chlorophyte Nannochloris sp.: Relating individual-cell to bulk measurements. Limnol. Oceanogr., 43, 1107–1118.CrossRefGoogle Scholar
  12. Dusenberry, J. A., R. J. Olson and S. W. Chisholm (2001): Photoacclimation kinetics of single-cell fluorescence in laboratory and field populations of Prochlorococcus. Deep-Sea Res. I, 48, 1443–1458.CrossRefGoogle Scholar
  13. Ferrari, G. M. and S. Tassan (1999): A method using chemical oxidation to remove light absorption by phytoplankton pigments. J. Phycol., 35, 1090–1098.CrossRefGoogle Scholar
  14. Furuya, K. and R. Marumo (1983): Size distribution of phytoplankton in the western Pacific Ocean and adjacent waters in summer. Bull. Plankton Soc. Japan, 30, 21–32.Google Scholar
  15. Gardner, W. D., I. D. Walsh and M. J. Richardson (1993): Biophysical forcing of particle production and distribution during a spring bloom in the North Atlantic. Deep-Sea Res. II, 40, 171–195.CrossRefGoogle Scholar
  16. Gardner, W. D., S. P. Chung, M. J. Richardson and I. D. Walsh (1995): The oceanic mixed-layer pump. Deep-Sea Res., 42, 757–775.Google Scholar
  17. Hoepffner, N. and S. Sathyendranath (1992): Bio-optical characteristics of coastal waters: Absorption spectra of phytoplankton and pigment distribution in the western North Atlantic. Limnol. Oceanogr., 37, 1660–1679.CrossRefGoogle Scholar
  18. Holm-Hansen, O., C. J. Lorenzen, R. W. Holmes and J. D. H. Strickland (1965): Fluorometric determination of chlorophyll. J. Cons. perm. int. Explor. Mer., 30, 3–15.CrossRefGoogle Scholar
  19. Kirk, J. T. O. (1975): A theoretical analysis of the contribution of algal cells to the attenuation of light within waters, II, Spherical cells. New Phytol., 75, 21–36.CrossRefGoogle Scholar
  20. Kogure, K., U. Shimada and N. Taga (1980): Distribution of viable marine bacteria in neritic seawater around Japan. Can. J. Microbiol., 26, 318–323.CrossRefGoogle Scholar
  21. Kroon, B. M. A., M. Latasa, B. W. Ibelings and L. R. Mur (1992): The effect of dynamic light regimes on Chlorella. I. Pigments and cross sections. Hydrobiologia, 238, 71–78.CrossRefGoogle Scholar
  22. Levy, M., L. Memery and G. Madec (1998): The onset of a bloom after deep winter convection in the north western Mediterranean Sea: Mesoscale process study with a primitive equation model. J. Mar. Syst., 16, 7–21.CrossRefGoogle Scholar
  23. Lui, H., K. Suzuki and H. Saito (2004): Community structure and dynamics of phytoplankton in the western subarctic Pacific Ocean: A synthesis. J. Oceanogr., 60, 119–137.CrossRefGoogle Scholar
  24. Longhurst, A., S. Sathyendranath, T. Platt and C. M. Caverhill (1995): An estimate of global primary production in the ocean from satellite radiometer date. J. Plankton Res., 17, 1245–1271.CrossRefGoogle Scholar
  25. MacIssac, E. A. and J. G. Stockner (1993): Enumeration of phototrophic picoplankton by autofluoroescence microscopy. p. 187–197. In Handbook of Methods in Aquatic Microbial Ecology, ed. by P. F. Kemp, B. F. Sherr, E. B. Sherr and J. J. Cole, CRC Press, Boca Raton.Google Scholar
  26. Malone, T. C. (1980): Algal size. p. 433–463. In The Physiological Ecology of Phytoplankton, ed. by I. Morris, Blackwell Scientific Publishers, Oxford.Google Scholar
  27. Miyazono, A., T. Odate and Y. Maita (1992): Seasonal fluctuations of cell density of Cyanobacteria and other picophytoplankton in Iwanai Bay, Hokkaido, Japan. J. Oceanogr., 48, 257–266.CrossRefGoogle Scholar
  28. Moore, L., R. Goericke and S. W. Chisholm (1995): Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. J. Mar. Res., 51, 617–649.Google Scholar
  29. Morel, A. and A. Bricaud (1981): Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton. Deep-Sea Res., 28, 1375–1393.CrossRefGoogle Scholar
  30. Morel, A. and A. Bricaud (1986): Inherent optical properties of algal cells including picoplankton: theoretical and experimental results. p. 521–529. In Photosynthetic Picoplankton, ed. by T. Platt and W. K. W. Li, Canadian Bulletin of Fisheries and Aquatic Sciences 214.Google Scholar
  31. Naganuma, T. (1997): Abundance and production of bacterioplankton along a transect of Ise Bay, Japan. J. Oceanogr., 53, 579–583.Google Scholar
  32. Odate, T. (1996): Abundance and size composition of the summer phytoplankton communities in the western North Pacific Ocean, the Bering Sea, and the Gulf of Alaska. J. Oceanogr., 52, 335–351.CrossRefGoogle Scholar
  33. Ohi, N., Y. Ishiwata and S. Taguchi (2002): Diel patterns in light absorption and absorption efficiency factors of Isochrysis galbana (Prymnesiophyceae). J. Phycol., 38, 730–737.CrossRefGoogle Scholar
  34. Ohi, N., M. Shino, Y. Ishiwata and S. Taguchi (2003): Light absorption of Isochrysis galbana (Prymnesiophyceae) under day-night cycle at high-light irradiance. Plankton Biol. Ecol., 50, 1–9.Google Scholar
  35. Sarmiento, J. L., R. D. Slater, M. J. R. Fasham, H. W. Ducklow, J. R. Toggweiler and G. T. Evans (1993): A seasonal three-dimensional ecosystem model of nitrogen cycling in the North Atlantic euphotic zone. Global Biogeochem. Cycles, 7, 417–450.CrossRefGoogle Scholar
  36. Shiomoto, A., K. Sasaki, T. Shimoda and S. Matsumura (1994): Primary productivity in the offshore Oyashio in the Spring and Summer 1990. J. Oceanogr., 50, 209–222.CrossRefGoogle Scholar
  37. Sosik, H. M. (1999): Storage of marine particulate samples for light absorption measurements. Limnol. Oceanogr., 44, 1139–1141.CrossRefGoogle Scholar
  38. Sosik, H. M. and B. G. Mitchell (1995): Light absorption by phytoplankton, photosynthetic pigments and detritus in the California Current System. Deep-Sea Res. I, 42, 1717–1748.CrossRefGoogle Scholar
  39. Stramska, M. and T. D. Dickey (1992): Variability of bio-optical properties of the upper ocean associated with diel cycles in phytoplankton populations. J. Geophys. Res., 97, 17873–17887.CrossRefGoogle Scholar
  40. Stramski, D. and R. A. Reynolds (1993): Diel variations in the optical properties of a marine diatom. Limnol. Oceanogr., 38, 1347–1364.CrossRefGoogle Scholar
  41. Stramski, D., A. Shalapyorok and R. A. Reynolds (1995): Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day-night cycle in natural irradiance. J. Geophys. Res., 100, 13295–13307.CrossRefGoogle Scholar
  42. Suzuki, R. and T. Ishimaru (1990): An improved method for the determination of phytoplankton chlorophyll using N, N-dimethylformamide. J. Oceanogr. Soc. Japan, 46, 190–194.CrossRefGoogle Scholar
  43. Takahashi, M., K. Kikuchi and Y. Hara (1985): Importance of picocyanobacteria biomass (unicellular, blue-green algae) in the phytoplankton population of the coastal waters off Japan. Mar. Biol., 89, 63–69.CrossRefGoogle Scholar
  44. Tassan, S. and G. M. Ferrari (1995): An alternative approach to absorption measurements of aquatic particles retained on filters. Limnol. Oceanogr., 40, 1358–1368.CrossRefGoogle Scholar
  45. van de Hulst, H. C. (1957): Light Scattering by Small Particles. Wiley-Liss, New York, 470 pp.Google Scholar
  46. Vaulot, D. and D. Marie (1999): Diel variability of photosynthetic picoplankton in the equatorial Pacific. J. Geophys. Res., 104, 3297–3310.CrossRefGoogle Scholar
  47. Wiesse, T. (1993): Dynamics of autotrophic picoplankton in marine and freshwater ecosystems. Adv. Microb. Ecol., 13, 327–369.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Laboratory of Biological Oceanography, Department of Environmental Engineering for Symbiosis, Faculty of EngineeringSoka UniversityTangi-cho, HachioujiJapan
  2. 2.Tohoku National Fisheries Research InstituteShinhama-cho, ShiogamaJapan

Personalised recommendations