Journal of Oceanography

, Volume 60, Issue 4, pp 767–772 | Cite as

Influence of Introduced CO2 on Deep-Sea Metazoan Meiofauna

  • Kevin R. Carman
  • David Thistle
  • John W. Fleeger
  • James P. Barry


An experiment was performed to determine the effect of injected CO2 on the deep-sea (3200 m) meiofaunal community in the Monterey Canyon. Approximately 20 L of liquid CO2 was added to each of three cylindrical corrals (PVC rings pushed into the seabed) that were arranged in a triangular array 10 m on a side. After a 30-day period, sediment cores were collected within an area exposed to the dissolution plume emanating from the CO2 pools and from a reference site approximately 40 m away; cores were also collected from within two of the CO2 corrals. Sediment cores were sectioned into 0–5, 5–10, and 10–20 mm layers. Abundances of major groups (harpacticoid copepods, nematodes, nauplii, kinorhynchs, polychaetes, and total meiofauna) were determined for each layer. CO2 exposure did not significantly influence the abundances or vertical distributions of any of the major taxa. However, other evidence suggests that abundance alone did not accurately reflect the effect of CO2 on meiofauna. We argue that slow decomposition rates of meiofaunal carcasses can mask adverse effects of CO2 and that longer experiments and/or careful examination of meiofaunal condition are needed to accurately evaluate CO2 effects on deep-sea meiofaunal communities.

CO2 sequestration meiofauna deep sea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auerbach, D. I., J. A. Caulfield, E. E. Adams and H. J. Herzog (1997): Impacts of ocean disposal on marine life: I. A toxi-cological assessment integrating constant-concentration laboratory assay data with variable-concentration field ex-posure. Environ. Model. Asses., 2, 333–343.CrossRefGoogle Scholar
  2. Barry, J. P., K. R. Buck, C. F. Lovera, L. Kuhnz, P. J. Whaling, E. T. Peltzer, P. Walz and P. G. Brewer (2004): Effects of direct ocean CO 2 injection on deep-sea meiofauna. J. Oceanogr., 60, this issue, 759–766.CrossRefGoogle Scholar
  3. Brewer, P. G., G. Friederich, E. T. Peltzer and F. M. Orr, Jr. (1999): Direct experiments on the ocean disposal of fossil fuel CO 2. Science, 284, 943–945.CrossRefGoogle Scholar
  4. Caldeira, K. and G. H. Rau (2000): Accelerating carbonate dis-solution to sequester carbon dioxide in the ocean: Geochemical implications. Geophys. Res. Lett., 27, 225–228.CrossRefGoogle Scholar
  5. Carman, K. R., K. M. Sherman and D. Thistle (1987): Evidence that sediment type influences the horizontal and vertical distribution of nematodes at a deep-sea site. Deep-Sea Res., 34, 45–53.CrossRefGoogle Scholar
  6. Carman, K. R., J. W. Fleeger and S. M. Pomarico (1997): Re-sponse of a benthic food web to hydrocarbon contamination. Limnol. Oceanogr., 42, 561–571.CrossRefGoogle Scholar
  7. Coull, B. C. and G. T. Chandler (1992): Pollution and meiofauna: field, laboratory, and mesocosm studies. Oceanogr. Mar. Biol. Ann. Rev., 30, 191–271.Google Scholar
  8. Drange, H., G. Alendal and O. M. Johannessen (2001): Ocean release of fossil fuel CO 2: A case study. Geophys. Res. Lett., 28, 2637–2640.CrossRefGoogle Scholar
  9. Jannasch, H. W., K. Eimhjellen, C. O. Wirsen and A. Farmanfarmaian (1971): Microbial degradation of organic matter in the deep sea. Science, 171, 672–675.CrossRefGoogle Scholar
  10. Jonasson, K. E., C. J. Schroderadams and R. T. Patterson (1995): Benthic foraminiferal distribution at Middle Valle, Juan-de-Fuca Ridge, a Northeast Pacific hydrothermal venting site. Mar. Micropal., 25, 151–167.CrossRefGoogle Scholar
  11. Keeling, C. D. and T. P. Whorf (1998): Atmospheric CO 2 records from sites in the SIO air sampling network. In Trends: A Compendium of Data on Global Change, Information Analysis Center, Oakridge National Laboratory. []Google Scholar
  12. Lambshead, P. J. D. (1993): Recent developments in marine benthic biodiversity research. Oceanis, 19, 5–24.Google Scholar
  13. Littell, R. C., G. A. Milliken, W. W. Stroup and R. D. Wolfinger (1996): SAS System for Mixed Models. Cary, NC, SAS In-stitute Inc.Google Scholar
  14. Lotufo, G. R. and J. W. Fleeger (1995): Description of Amphiascoides atopus, a new species (Copepods: Harpacticoida) from a mass culture system. Proc. Biol. Soc. Wash., 108, 117–124.Google Scholar
  15. Meadows, P. S., A. C. Reichelt and A. Meadows (1994): Mi-crobial and meiofaunal abundance, redox potential, pH, and shear-strength profiles in deep-sea sediments. J. Geol. Soc., 151, 377–390.CrossRefGoogle Scholar
  16. Omori, M., C. P. Maeda, M. Maeda, B. Kimura and M. Takahashi (1996): Some considerations on the environmental impact of oceanic disposal of CO 2. Workshop 2, Environmental Impacts, Stoke Orchard, Gloucestershire, p. 83–98.Google Scholar
  17. Ormerod, W. G. (1996): Ocean Storage of Carbon Dioxide. Workshop 3--International Links and Concerns. IEA Green-house Gas R & D Programme, Gloucestershire, U.K., 138 pp.Google Scholar
  18. Paula, J., P. F. E. Costa, A. Martins and D. Gove (2001): Pat-terns of abundance of seagrasses and associated infaunal communities at Inhaca Island, Mozambique. Estuar. Coast. Sh. Sci., 53, 307–318.CrossRefGoogle Scholar
  19. Reichle, D., J. Houghton, R. Kane, J. Ekmann, S. Benson, J. Clarke, R. Dahlman, G. Hendrey, H. Herzog, J. Hunter-Cevera, G. Jacobs, R. Judkins, J. Ogden, A. Palmisano, R. Socolow, J. Stringer, T. Surles, A. Wolsky, N. Woodward and M. York (1999): Carbon Sequestration Research and Development. Office of Science, Office of Fossil Energy, US Department of Energy.Google Scholar
  20. Schimel, D., I. G. Enting, M. Heimann, T. M. L. Widley, D. Raynaud, D. Alves and U. Siegenthaler (1995): CO 2 and the carbon cycle. p. 35–71. In Climate Change 1994, ed. by J. Y. Houghton, L. G. M. Filho, J. Bruce, H. Lee, B. A. Callander, E. Haites, N. Harris and K. Maskell, Cambridge University Press, Cambridge.Google Scholar
  21. Seibel, B. A. and P. J. Walsh (2001): Potential impacts of CO 2 injection on deep-sea biota. Science, 294, 319–320.CrossRefGoogle Scholar
  22. Seibel, B. A. and P. J. Walsh (2003): Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance. J. Exp. Biol., 206, 641–650.CrossRefGoogle Scholar
  23. Shirayama, Y. (1995): Current status of deep-sea biology in relation to CO 2 disposal. p. 253–264 In Direct Ocean Disposal of Carbon Dioxide, ed. by N. Handa and T. Ohsumi, TERRAPUB, Tokyo.Google Scholar
  24. Siemens, R. A., S. M. Mudge and J. M. Cancino (2001): The effect of physical and chemical parameters on the macroinfaunal community structure of San Vicente Bay, Chile. Revista Chilena de Historia Natural, 74, 429–444.CrossRefGoogle Scholar
  25. Tamburri, M. N., E. T. Peltzer, G. E. Friederich, I. Aya, K. Yamane and P. G. Brewer (2000): A field study of the effects of CO 2 ocean disposal on mobile deep-sea animals. Mar. Chem., 72, 95–101.CrossRefGoogle Scholar
  26. Thiel, H. (1979): Structural aspects of deep-sea benthos. Ambio Spec. Rep., 6, 25–31.Google Scholar
  27. Thiermann, F., I. Akoumianaki, J. A. Hughes and O. Giere (1997): Benthic fauna of a shallow-water gaseohydrothermal vent area in the Aegean Sea (Milos, Greece). Mar. Biol., 128, 149–159.CrossRefGoogle Scholar
  28. Thistle, D. and L. A. Levin (1998): The effect of experimen-tally increased near-bottom flow on metazoan meiofauna at a deep-sea site, with comparison data on macrofauna. Deep-Sea Res. I, 45, 625–638.CrossRefGoogle Scholar
  29. Thistle, D., K. R. Carman, L. Sedlacek, P. G. Brewer, J. W. Fleeger and J. P. Barry (2004): Experimental disposal of CO 2 on the deep-sea floor kills some sediment-dwelling animals. Mar. Ecol. Prog. Ser. (submitted).Google Scholar
  30. Tyler, P. A. (2003): Disposal in the deep sea: analogue of na-ture or faux ami? Environ. Conserv., 30, 26–39.CrossRefGoogle Scholar
  31. Vonesh, E. F. and V. M. Chinchilli (1997): Linear and nonlinear models for the analysis of repeated measurements. Statis-tics, Textbooks and Monographs, 154, 293–294.Google Scholar
  32. Vopel, K., J. Dehmlow and G. Artl (1996): Vertical distribution of Cletocamptus confluens (Copepoda, Harpacticoida) in relation to oxygen and sulphide microprofiles of a brackish water sulphuretum. Mar. Eco. Prog. Ser., 141, 129–137.CrossRefGoogle Scholar
  33. Walters, K. (1991): Influences of abundance, behavior, species composition, and ontogenetic stage on active emergence of meiobenthic copepods in subtropical habitats. Mar. Biol., 108, 207–215.CrossRefGoogle Scholar
  34. Yamasaki, A. (2003): An overview of CO 2 mitigation options for global warming--Emphasizing CO 2 sequestration op-tions. J. Chem. Engin. Japan, 36, 361–375.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan 2004

Authors and Affiliations

  • Kevin R. Carman
    • 1
  • David Thistle
    • 2
  • John W. Fleeger
    • 1
  • James P. Barry
    • 3
  1. 1.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA
  2. 2.Department of OceanographyFlorida State UniversityTallahasseeUSA
  3. 3.Monterey Bay Aquarium Research InstituteMoss LandingUSA

Personalised recommendations