Advertisement

Journal of Oceanography

, Volume 60, Issue 4, pp 759–766 | Cite as

Effects of Direct Ocean CO2 Injection on Deep-Sea Meiofauna

  • James P. Barry
  • Kurt R. Buck
  • Chris F. Lovera
  • Linda Kuhnz
  • Patrick J. Whaling
  • Edward T. Peltzer
  • Peter Walz
  • Peter G. Brewer
Article

Abstract

Purposeful deep-sea carbon dioxide sequestration by direct injection of liquid CO2 into the deep waters of the ocean has the potential to mitigate the rapid rise in atmospheric levels of greenhouse gases. One issue of concern for this carbon sequestration option is the impact of changes in seawater chemistry caused by CO2 injection on deep-sea ecosystems. The effects of deep-sea carbon dioxide injection on infaunal deep-sea organisms were evaluated during a field experiment in 3600 m depth off California, in which liquid CO2 was released on the seafloor. Exposure to the dissolution plume emanating from the liquid CO2 resulted in high rates of mortality for flagellates, amoebae, and nematodes inhabiting sediments in close proximity to sites of CO2 release. Results from this study indicate that large changes in seawater chemistry (i.e. pH reductions of ∼0.5–1.0 pH units) near CO2 release sites will cause high mortality rates for nearby infaunal deep-sea communities.

CO2 sequestration meiofauna ecological impacts deep-sea biology hypercapnia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnola, J.-M., D. Raynaud, C. Lorius and N. I. Barkov (2003): Historical CO 2 record from the Vostok ice core. In Trends: A Compendium of Data on Global Change, Carbon Diox-ide Information Analysis Center, Oak Ridge National Labo-ratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.Google Scholar
  2. Brewer, P. G., G. Friederich, E. T. Peltzer and F. M. Orr, Jr. (1999): Direct experiments on the ocean disposal of fossil fuel CO 2. Science, 284,943–945.CrossRefGoogle Scholar
  3. Buck, K. R., J. P. Barry and A. G. B. Simpson (2000): Monterey Bay cold seep biota: euglenozoa with chemoautotrophic bacterial epibionts. Europe J. Protistology, 35,117–126.CrossRefGoogle Scholar
  4. Caldeira, K. and G. H. Rau (2000): Accelerating carbonate dis-solution to sequester carbon dioxide in the ocean: Geochemical implications. Geophys. Res. Lett., 27,225–228.CrossRefGoogle Scholar
  5. Caldeira, K. and M. E. Wickett (2002): Comparing pH impacts of oceanic CO 2 injection and atmospheric CO 2 release. Eos Trans. AGU, 83(1), Spring Meet. Suppl., Abstract OS51F-01.Google Scholar
  6. Caldeira, K., A. K. Jain and M. I. Hoffert (2003): Climate sen-sitivity uncertainty and the need for energy without CO 2 emission. Science, 299,2052–2054.CrossRefGoogle Scholar
  7. DeLucia, E. H., J. G. Hamilton, S. L. Naidu, R. B. Thomas, J. A. Andrews, A. Finzi, M. Lavine, R. Matalama, J. E. Mohan, G. R. Hendrey and W. H. Schlesinger (1999): Net primary production of a forest ecosystem with experimental CO 2 enrichment. Science, 284,1177–1179.CrossRefGoogle Scholar
  8. Drange, H., G. Alendal and O. M. Johannessen (2001): Ocean release of fossil fuel CO 2: A case study. Geophys. Res. Lett., 28,2637–2640.CrossRefGoogle Scholar
  9. Harvey, L. D. D. (2003): Impact of deep-ocean carbon seques-tration on atmospheric CO 2 and on surface-water chemistry. Geophys. Res. Lett., 30,1237–1240.CrossRefGoogle Scholar
  10. Haugan, P. M. and H. Drange (1992): Sequestration of CO 2 in the deep ocean by shallow injection. Nature, 357,318–320.CrossRefGoogle Scholar
  11. Hochachka, P. W. and G. N. Somero (2002): Biochemical Ad-aptation: Mechanism and Process in Physiological Evolu-tion. Oxford University Press, Oxford, 466 pp.Google Scholar
  12. Houghton, J. T., G. J. Jenkins and J. J. Ephraums (1990): Sci-entific Assessment of Climate Change--Report of Working Group I. Intergovernmental Panel on Climate Change, Cam-bridge University Press, Cambridge, U.K., 365 pp.Google Scholar
  13. Intergovernmental Panel on Climate Change (2001): In Climate Change 2001: The Scientific Basis, ed. by J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden and D. Xiaosu, Cambridge University Press, Cambridge, U.K., 944 pp.Google Scholar
  14. Keeling, C. D. and T. P. Whorf (2002): Atmospheric CO 2 records from sites in the SIO air sampling network. In Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Labora-tory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.Google Scholar
  15. Kleypas, J. A., R. W. Buddemeier, D. Archer, J.-P. Gattuso, C. Langdon and B. N. Opdyke (1999): Geochemical conse-quences of increased atmospheric carbon dioxide on coral reefs. Science, 284,118–120.CrossRefGoogle Scholar
  16. Knowlton, N. (2001): The future of coral reefs. Proc. Nat. Acad. Sci., 98,5419–5425.CrossRefGoogle Scholar
  17. Mann, M. E., R. S. Bradley and M. K. Hughes (1999): North-ern hemisphere temperatures during the past millennium: interferences, uncertainties, and limitations. Geophys. Res. Lett., 26,759–762.CrossRefGoogle Scholar
  18. Marchetti, C. (1977): On geoengineering and the CO 2 problem. Climate Change, 1,59–69.CrossRefGoogle Scholar
  19. Marland, G., T. A. Boden and R. J. Andres (2001): Global, Re-gional, and National CO 2 Emissions. In Trends: A Compen-dium of Data on Global Change, Carbon Dioxide Informa-tion Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy (http://cdiac.esd.ornl.gov/trends/trends.htm).Google Scholar
  20. McNeil, B., R. J. Matear, R. M. Key, J. L. Bullister and J. L. Sarmiento (2003): Anthropogenic CO 2 uptake by the ocean based on the global chlorofluorocarbon data set. Science, 299,235–239.CrossRefGoogle Scholar
  21. Parmesan, C. and G. Yohe (2003): A globally coherent finger-print of climate change impacts across natural systems. Nature, 421,37–42.CrossRefGoogle Scholar
  22. Pörtner, H.-O. and A. Reipschläger (1996): Ocean disposal of anthropogenic CO 2: physiological effects on tolerant and intolerant animals. p.57–81. In Ocean Storage of CO 2 . En-vironmental, Workshop 2: Environmental Impact, ed. by B. Ormerod and M. Angel, IEA Green house and Gas R & D Programme, Southampton Oceanography Centre, U.K.Google Scholar
  23. Reichle, D., J. Houghton, S. Benson, J. Clarke, F. R. Dahlman, G. Hendrey, H. Herzog, J. Hunter-Cevera, G. Jacobs, R. Judkins, B. Kane, J. Ekmann, J. Ogden, A. Palmisano, R. Socolow, J. Stringer, T. Surles, A. Wolsky, N. Woodward and M. York (1999): Carbon Sequestration: Research and Development. Office of Science, Office of Fossil Energy, U.S. Dept. of Energy, 259 pp.Google Scholar
  24. Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweig and J. A. Pounds (2003): Fingerprints of glo-bal warming on wild animals and plants. Nature, 421,57–60.CrossRefGoogle Scholar
  25. Sabine, C. L., R. A. Feely, R. M. Key, J. L. Bullister, F. J. Millero, K. Lee, T.-H. Peng, B. Tilbrook, T. Ono and C. S. Wong (2002): Distribution of anthropogenic CO 2 in the Pacific Ocean. Global Biogeochem. Cycles, 16,1083–1099.Google Scholar
  26. Seibel, B. A. and P. J. Walsh (2003): Biological impacts of deep-sea carbon dioxide injection inferred from indices of physi-ological performance. J. Exp. Biol., 206,641–650.CrossRefGoogle Scholar
  27. Zar, J. H. (1999): Biostatistical Analysis. 4th ed., Prentice-Hall, Englewood Cliffs, N.J., 929 pp.Google Scholar

Copyright information

© The Oceanographic Society of Japan 2004

Authors and Affiliations

  • James P. Barry
    • 1
  • Kurt R. Buck
    • 1
  • Chris F. Lovera
    • 1
  • Linda Kuhnz
    • 1
  • Patrick J. Whaling
    • 1
  • Edward T. Peltzer
    • 1
  • Peter Walz
    • 1
  • Peter G. Brewer
    • 1
  1. 1.Monterey Bay Aquarium Research InstituteMoss LandingU.S.A.

Personalised recommendations