Advertisement

Journal of Oceanography

, Volume 60, Issue 4, pp 751–758 | Cite as

Small Scale Field Study of an Ocean CO2 Plume

  • Peter G. Brewer
  • Edward Peltzer
  • Izuo Aya
  • Peter Haugan
  • Richard Bellerby
  • Kenji Yamane
  • Ryuji Kojima
  • Peter Walz
  • Yasuharu Nakajima
Article

Abstract

We have carried out a small-scale (∼20 l) CO2 sequestration experiment off northern California (684 m depth, ∼5°C, background ocean pH ∼7.7) designed as an initial investigation of the effects of physical forcing of the fluid, and the problem of sensing the formation of a low pH plume. The buoyant CO2 was contained in a square frame 1.2 m high, exposing 0.21 m2 to ocean flow. Two pH electrodes attached to the frame recorded the signal; a second frame placed 1.9 m south of the CO2 pool was also equipped with two recording pH electrodes. An additional pH electrode was held in the ROV robotic arm to probe the fluid interface. Local water velocities of up to 40 cm sec−1 were encountered, creating significant eddies within the CO2 box, and forcing wavelets at the fluid interface. This resulted in rapid CO2 dissolution, with all CO2 being depleted in a little more than 2 days. The pH record from the sensor closest (∼10 cm) to the CO2 showed many spikes of low pH water, the extreme value being ∼5.9. The sensor 1 m immediately below this showed no detectable response. The electrodes placed 1.9 m distant from the source also recorded very small perturbations. The results provide important clues for the design of future experiments for CO2 disposal and biogeochemical impact studies. These include the need for dealing with the slow CO2 hydration kinetics, better understanding of the fluid dynamics of the CO2-water interface, and non-point source release designs to provide more constant, controlled local CO2 enrichments within the experimental area.

Carbon dioxide sequestration ocean pH ROV 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, E., N. Nakashiki, B. Chen, T. Sato and G. Alendal (2003): Plume experiments and modeling. p.785–790. In Greenhouse Gas Control Technologies, ed. by J. Gale and Y. Kaya, Pergamon.Google Scholar
  2. Alendal, G. and H. Drange (2001): Two-phase, near field modeling of purposefully released CO 2 in the ocean. J. Geophys. Res., 106,1085–1096.CrossRefGoogle Scholar
  3. Archer, D., H. Kheshgi and E. Maier-Reimer (1998): The dy-namics of fossil fuel CO 2 neutralization by marine CaCO 3. Global Biogeochem. Cycles, 12,259–276.CrossRefGoogle Scholar
  4. Auerbach, D. I., J. A. Caulfield, E. E. Adams and H. J. Herzog (1997): Impacts of ocean CO 2 disposal on marine life: I. A toxicological assessment integrating constsnt-concentration laboratory assay data with variable-concentration field ex-posure. Environ. Modeling Assessment, 2,345–353.CrossRefGoogle Scholar
  5. Aya, I., K. Yamane and H. Nariai (1997): Solubility of CO 2 and density of CO 2 hydrate at 30 MPa. Energy, 22,263–271.CrossRefGoogle Scholar
  6. Barry, J. P., B. A. Seibel, J. C. Drazen, M. N. Tamburri, K. R. Buck, C. Lovera, L. Kuhnz, E. T. Peltzer, K. Osborn, P. J. Whaling, P. Walz and P. G. Brewer (2003): Deep-sea field experiments on the biological impacts of direct deep-sea CO 2 injection. In Proceedings of the Second Annual Conference on Carbon Sequestration, U.S. Dept. of Energy.Google Scholar
  7. Brewer, P. G. (1997): Ocean chemistry of the fossil fuel CO 2 signal: the haline signature of “Business as Usual”. Geophys. Res. Lett., 24,1367–1369.CrossRefGoogle Scholar
  8. Brewer, P. G. (2003): Direct injection of CO 2 in the ocean. p.469–478. In Toward CO 2 Stabilization: Issues, Strategies, and Consequences, ed. by C. Field and M. R. Raupach, Island Press, 526 pp.Google Scholar
  9. Brewer, P. G. and A. Bradshaw (1975): The effect of the non-ideal composition of sea water on salinity and density. J. Mar. Res., 33,157–175.Google Scholar
  10. Brewer, P. G., D. M. Glover, C. Goyet and D. K. Shafer (1995): The pH of the North Atlantic Ocean: Improvements to the global model for sound absorption in seawater. J. Geophys. Res., 100,8761–8776.CrossRefGoogle Scholar
  11. Brewer, P. G., G. Friederich, E. T. Peltzer and F. M. Orr, Jr. (1999): Direct experiments on the ocean disposal of fossil fuel CO 2. Science, 284, 943–945.CrossRefGoogle Scholar
  12. Brewer, P. G., E. T. Peltzer, G. Friederich, I. Aya and K. Yamane (2000): Experiments on the ocean sequestration of fossil fuel CO 2: pH measurements and hydrate formation. Mar. Chem., 72, 83–93.CrossRefGoogle Scholar
  13. Brewer, P. G., E. T. Peltzer, G. Friederich and G. Rehder (2002): Experimental determination of the fate of rising CO 2 drop-lets in seawater. Environ. Sci. Technol., 36, 5441–5446.CrossRefGoogle Scholar
  14. Chen, B., Y. Song, M. Nishio and M. Akai (2003): Large-eddy simulation of double-plume formation induced by CO 2 dis-solution in the ocean. Tellus, 55B, 723–730.CrossRefGoogle Scholar
  15. DeLucia, E. H., J. G. Hamilton, S. L. Naidu, R. B. Thomas, J. A. Andrews, A. Finzi, M. Lavine, R. Matalama, J. E. Mohan, G. R. Hendrey and W. H. Schlesinger (1999): Net primary production of a forest ecosystem with experimental CO 2 enrichment. Science, 284, 1177–1179.CrossRefGoogle Scholar
  16. Dickson, A. G. and F. J. Millero (1987): A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res., 34, 1733–1743.CrossRefGoogle Scholar
  17. Eigen, M., K. Kustin and G. Maass (1961): Die Geschwindigkeit der Hydration von SO 2 in wasseriges Losung. Z. Physik. Chem. (N.F.), 30, 130–136.CrossRefGoogle Scholar
  18. Fer, I. and P. M. Haugan (2003): Dissolution from a liquid-CO 2 lake disposed in the deep ocean. Limnol. Oceanogr., 48, 872–883.CrossRefGoogle Scholar
  19. Gale, J. and Y. Kaya (eds.) (2003): Greenhouse Gas Control Technologies. 1879 pp.Google Scholar
  20. GESAMP (1983): Report 19. An oceanographic model for the dispersion of wastes disposed of in the deep sea. Interna-tional Atomic Energy Agency.Google Scholar
  21. Handa, N. and T. Ohsumi (1995): Direct Ocean Disposal of Carbon Dioxide. TERRAPUB, Tokyo, 274 pp.Google Scholar
  22. Haugan, P. M. (2003): On the production and use of scientific knowledge about ocean sequestration. p. 719–724. In Green-house Gas Control Technologies, ed. by J. Gale and Y. Kaya, Pergamon.Google Scholar
  23. Haugan, P. M. and H. Drange (1992): Sequestration of CO 2 in the deep ocean by shallow injection. Nature, 357, 318–320.CrossRefGoogle Scholar
  24. Johnson, K. S. (1982): Carbon dioxide hydration and dehydra-tion kinetics in sea water. Limnol. Oceanogr., 27, 849–855.CrossRefGoogle Scholar
  25. Mehrbach, C., C. H. Culberson, J. E. Hawley and R. M. Pytkowicz (1973): Measurement of the apparent dissocia-tion constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr., 18, 897–907.CrossRefGoogle Scholar
  26. Rehder, G., P. G. Brewer, E. T. Peltzer and G. Friederich (2002): Enhanced lifetime of methane bubble streams within the deep ocean. Geophys. Res. Lett., 29, doi:10.1029/ 2001GL013966.CrossRefGoogle Scholar
  27. Rehder, G., S. H. Kirby, W. B. Durham, L. A. Stern, E. T. Peltzer, J. Pinkston and P. G. Brewer (2004): Dissolution rates of pure methane hydrate and carbon dioxide hydrate in under-saturated sea water at 1000 m depth. Geochim. Cosmochim. Acta, 68, 285–292.CrossRefGoogle Scholar
  28. Sato, T. (2003): Modelling of biological impact in direct injec-tion of carbon dioxide in the ocean. p. 759–764. In Green-house Gas Control Technologies, ed. by J. Gale and Y. Kaya, Pergamon.Google Scholar
  29. Soli, A. L. and R. H. Byrne (2002): CO 2 system hydration and dehydration kinetics and the equilibrium CO 2 /H 2 CO 3 ratio in aqueous NaCl solution. Mar. Chem., 78, 65–73.CrossRefGoogle Scholar
  30. Tamburri, M., E. T. Peltzer, G. E. Friederich, I. Aya, K. Yamane and P. G. Brewer (2000): A field study of the effects of CO 2 ocean disposal on mobile deep-sea animals. Mar. Chem., 72, 95–101.CrossRefGoogle Scholar
  31. Yamane, K., I. Aya, S. Namie and H. Nariai (2000): Strength of CO 2 hydrate membrane in sea water at 40 MPa. p. 254–260. In Gas Hydrates: Challenges for the Future, Annals New York Acad. Sci., 912, ed. by G. Holder and P. R. Bishnoi.Google Scholar
  32. Zeebe, R. E., D. A. Wolf-Gladrow and H. Jansen (1999): On the time required to establish chemical and isotopic equi-librium in the carbon dioxide system in sea water. Mar. Chem., 65, 135-153.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan 2004

Authors and Affiliations

  • Peter G. Brewer
    • 1
  • Edward Peltzer
    • 1
  • Izuo Aya
    • 2
  • Peter Haugan
    • 3
  • Richard Bellerby
    • 3
  • Kenji Yamane
    • 2
  • Ryuji Kojima
    • 2
  • Peter Walz
    • 1
  • Yasuharu Nakajima
    • 4
  1. 1.Monterey Bay Aquarium Research InstituteMoss LandingU.S.A.
  2. 2.Osaka BranchNational Maritime Research InstituteOsakaJapan
  3. 3.Geophysical InstituteUniversity of BergenBergenNorway
  4. 4.National Maritime Research InstituteTokyoJapan

Personalised recommendations