Journal of Oceanography

, Volume 60, Issue 4, pp 705–718 | Cite as

Biological Impact of Elevated Ocean CO2 Concentrations: Lessons from Animal Physiology and Earth History

  • Hans O. Pörtner
  • Martina Langenbuch
  • Anke Reipschläger


CO2 currently accumulating in the atmosphere permeates into ocean surface layers, where it may impact on marine animals in addition to effects caused by global warming. At the same time, several countries are developing scenarios for the disposal of anthropogenic CO2 in the worlds' oceans, especially the deep sea. Elevated CO2 partial pressures (hypercapnia) will affect the physiology of water breathing animals, a phenomenon also considered in recent discussions of a role for CO2 in mass extinction events in earth history. Our current knowledge of CO2 effects ranges from effects of hypercapnia on acid-base regulation, calcification and growth to influences on respiration, energy turnover and mode of metabolism. The present paper attempts to evaluate critical processes and the thresholds beyond which these effects may become detrimental. CO2 elicits acidosis not only in the water, but also in tissues and body fluids. Despite compensatory accumulation of bicarbonate, acid-base parameters (pH, bicarbonate and CO2 levels) and ion levels reach new steady-state values, with specific, long-term effects on metabolic functions. Even though such processes may not be detrimental, they are expected to affect long-term growth and reproduction and may thus be harmful at population and species levels. Sensitivity is maximal in ommastrephid squid, which are characterized by a high metabolic rate and extremely pH-sensitive blood oxygen transport. Acute sensitivity is interpreted to be less in fish with intracellular blood pigments and higher capacities to compensate for CO2 induced acid-base disturbances than invertebrates. Virtually nothing is known about the degree to which deep-sea fishes are affected by short or long term hypercapnia. Sensitivity to CO2 is hypothesized to be related to the organizational level of an animal, its energy requirements and mode of life. Long-term effects expected at population and species levels are in line with recent considerations of a detrimental role of CO2 during mass extinctions in the earth's history. Future research is needed in this area to evaluate critical effects of the various CO2 disposal scenarios.

Rising tropospheric CO2 concentrations ocean disposal of CO2 critical CO2 thresholds in marine animals physiological effects of hypercapnia acid-base disturbances CO2 in marine ecosystems mass extinction events 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarado-Alvarez, R., M. C. Gould and I. L. Stephano (1996): Spawning, in vitro maturation and changes in oocyte elec-trophysiology induced by serotonin in Tivela stultorum. Biol. Bull., 190, 322–328.CrossRefGoogle Scholar
  2. Anderson, M. E. (1990): Zoarcidae. p. 256–276. In Fishes of the Southern Ocean, ed. by O. Gon, P. C. Heemstra and J. L. B. Smith, Institute of Ichthyology, Grahamstown.Google Scholar
  3. Anderson, M. E. (1994): Systematics and Osteology of the Zoarcidae (Teleostei: Perdiformes). Ichthyol. Bull., 60, 120.Google Scholar
  4. Auerbach, D., J. A. Caulfield, E. E. Adams and H. J. Herzog (1997): Impacts of ocean CO 2 disposal on marine life: I. A toxicological assessment integrating constant-concentration laboratory assay data with variable-concentration field exposure.Env. Model. Assessment, 2, 333–343.CrossRefGoogle Scholar
  5. Bambach, R. K., A. H. Knoll and J. J. Sepkowski, Jr. (2002): Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. PNAS, 99, 6845–6859.CrossRefGoogle Scholar
  6. Bamber, R. N. (1987): The effects of acidic sea water in young carpet-shell clams, Venerupis decussata(L.) (Mollusca: Venracea). J. Exp. Mar. Biol. Ecol., 108, 241–260.CrossRefGoogle Scholar
  7. Bamber, R. N. (1990): The effects of acidic sea water on three species of lamellibranch molluscs. J. Exp. Mar. Biol. Ecol.,143, 181–191.CrossRefGoogle Scholar
  8. Barker, S. and H. Elderfield (2002): Foraminiferal calcification response to glacial-interglacial changes in atmosphericCO 2. Science, 297, 833–836.CrossRefGoogle Scholar
  9. Berner, R. A. (2002): Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. PNAS, 99, 4172–4177.CrossRefGoogle Scholar
  10. Burleson, M. L. and N. J. Smatresk (2000): Branchial chemoreceptors mediate ventilatory response to hypercapnic acidosis in channel catfish. Comp. Biochem. Physiol. A, 125, 403–414.CrossRefGoogle Scholar
  11. Cameron, J. N. and G. K. Iwama (1989): Compromises between ionic regulation and acid-base regulation in aquatic animals. Can. J. Zool., 67, 3078–3084.CrossRefGoogle Scholar
  12. Childress, J. J. (1995): Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends Ecol. Evolut., 10, 30–36.CrossRefGoogle Scholar
  13. Childress J. J. and B. A. Seibel (1998): Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers. J. Exp. Biol., 201, 1223–1232.Google Scholar
  14. Childress, J. J., R. Lee, N. K. Sanders, H. Felbeck, D. Oros, A. Toulmond, M. C. K. Desbruyeres and J. Brooks (1993): In-organic carbon uptake in hydrothermal vent tubeworms facilitated by high environmental PCO 2. Nature, 362, 147–149.CrossRefGoogle Scholar
  15. Claiborne, J. B., S. L. Edwards and A. I. Morrison-Shetlar (2002): Acid-base regulation in fishes: cellular and molecular mechanisms. J. Exp. Biol., 293(3), 302–319.Google Scholar
  16. Cornette, J. L., B. S. Lieberman and R. H. Goldstein (2002): Documenting a significant relationship between macroevolutionary origination rates and Phanerozoic pCO 2 levels. PNAS, 99, 7832–7835.CrossRefGoogle Scholar
  17. Crocker, C. E. and J. J. Cech (1996): The effects of hypercap-nia on the growth of juvenile white sturgeon, Acipenser transmontanus. Aquaculture, 147, 293–299.CrossRefGoogle Scholar
  18. D'Avino, R. and R. DeLuca (2000): Molecular modelling of Trematomus newnesi Hb1: insights for a lowered oxygen affinity and lack of Root effect. Proteins, 39(2), 155–165.CrossRefGoogle Scholar
  19. Desrosiers, R. R., J. Desilets and F. Dube (1996): Early devel-opmental events following fertilization in the giant scal-lop, Placopecten magellanicus. Can. J. Fish. Aquat. Sci., 53, 1382–1392.CrossRefGoogle Scholar
  20. Dudley, R. (1998): Atmospheric oxygen, giant Palaeozoic insects and the evolution of aerial locomotor performance. J.Exp. Biol., 201, 1043–1050.Google Scholar
  21. Edwards, S. L., J. B. Claiborne, A. I. Morrison-Shetlar and T. Toop (2001): Expression of Na + /H + exchanger mRNA in the gills of the Atlantic hagfish (Myxine glutinosa) in response to metabolic acidosis. Comp. Biochem. Physiol., 130, 81–91.CrossRefGoogle Scholar
  22. Evans, D. H. (1984): The roles of gill permeability and transport mechanisms in euryhalinity. p. 239–283. In Fish Physi-ology, Vol. XA, ed. by W. S. Haar and D. J. Randall, Academic Press, New York.Google Scholar
  23. Gage, J. D. and P. A. Tyler (1991): Deep Sea Biology. Cambridge University Press, New York.CrossRefGoogle Scholar
  24. Goffredi, S. K. and J. J. Childress (2001): Activity and inhibitor sensitivity of ATPases in the hydrothermal vent tubeworm Riftia pachyptila: a comparative approach. Mar.Biol., 138(2), 259–265.CrossRefGoogle Scholar
  25. Graham, M. S., R. L. Hädrich and G. L. Fletcher (1985): Hematology of three deep-sea fishes: a reflection of low metabolic rates. Comp. Biochem. Physiol. A, 80, 79–84.CrossRefGoogle Scholar
  26. Grosell, M., C. N. Laliberte, S. Wood, F. B. Jensen and C. M. Wood (2001): Intestinal HCO 3 – secretion in marine teleost fish: evidence for an apical rather than basolateral Cl – /HCO 3– exchanger. Fish Physiol. Biochem., 24, 81–95.CrossRefGoogle Scholar
  27. Hädrich, R. L. (1996): Perspective on deep sea fishes. p. 121–131. In Ocean Storage of Carbon Dioxide. Workshop 2--Environmental Impact, ed. by B. Ormerod and M. V. Angel, International Energy Agency Greenhouse Gas R&D Programm, Cheltenham, U.K.Google Scholar
  28. Haugan, P. M. and H. Drange (1996): Effects of CO 2 on the ocean environment. Energ. Convers. Manage., 37, 1019–1022.CrossRefGoogle Scholar
  29. Heisler, N. (1986a): Acid-base regulation in fishes. p. 309–356. In Acid-base Regulation in Animals, ed. by N. Heisler, Elsevier Biomedical Press, Amsterdam.Google Scholar
  30. Heisler, N. (1986b): Comparative aspects of acid-base regulation. P. 397–450. In Acid-base Regulation in Animals, ed. by N. Heisler, Elsevier Biomedical Press, Amsterdam.Google Scholar
  31. Heisler, N. (1993): Acid-base regulation. p. 343–377. In The Physiology of Fishes, ed. by D. H. Evans, CRC Press Inc., Boca Raton (FL), U.S.A.Google Scholar
  32. Hylland, P., S. Milton, M. Pek, G. E. Nilsson and P. L. Lutz (1997): Brain Na + /K +-ATPase activity in two anoxia tolerant vertebrates: Crucian carp and freshwater turtle. Neurosci. Lett., 235(1–2), 89–92.CrossRefGoogle Scholar
  33. Ingermann, R. L., M. Holcomb, M. L. Robinson and J. G. Cloud (2002): Carbon dioxide and pH affect sperm motility of white sturgeon (Acipenser transmontanus). J. Exp. Biol., 205, 2885–2890.Google Scholar
  34. Ishimatsu, A. and J. Kita (1999): Effects of environmental hy-percapnia on fish. Jap. J. Ichthyol., 46, 1–13.Google Scholar
  35. Ishimatsu, A., T. Kikkawa, M. Hayashi, K.-S. Lee and J. Kita (2004): Effects of CO 2 on marine fish: larvae and adults. J.Oceanogr., 60, this issue, 731–741.CrossRefGoogle Scholar
  36. Iwama, G. K. and N. Heisler (1991): Effect of environmental water salinity on acid-base regulation during environmental hypercapnia in the rainbow trout (Oncorhynchus mykiss).J. Exp. Biol., 158, 1–18.Google Scholar
  37. Jouve-Duhamel, A. and J. P. Truchot (1983): Ventilation on the shore crab Carcinus maenas as a function of ambient oxygen and carbon dioxide: Field and laboratory studies. J. Exp.Mar. Biol. Ecol., 70, 281–296.CrossRefGoogle Scholar
  38. Knoll, A. K., R. K. Bambach, D. E. Canfield and J. P. Grotzinger (1996): Comparative earth history and late Permian mass extinction. Science, 273, 452–457.CrossRefGoogle Scholar
  39. Kurihara, H., S. Shimode and Y. Shirayama (2004): Sub-lethal effects of elevated concentration of CO 2 on planktonic copepods and sea urchins. J. Oceanogr., 60, this issue, 743–750.CrossRefGoogle Scholar
  40. Langenbuch, M. and H. O. Pörtner (2002): Changes in metabolic rate and N-excretion in the marine invertebrate Sipunculus nudus under conditions of environmental hypercapnia: identifying effective acid-base parameters. J. Exp. Biol., 205, 1153–1160.Google Scholar
  41. Langenbuch, M. and H. O. Pörtner (2003): Energy budget of Antarctic fish hepatocytes (Pachycara brachycephalum and Lepidonotothen kempi) as a function of ambient CO 2: pH. dependent limitations of cellular protein biosynthesis? J. Exp. Biol., 206, 3895–3903.CrossRefGoogle Scholar
  42. Larsen, B. K., H. O. Pörtner and F. B. Jensen (1997): Extra-and intracellular acid-base balance and ionic regulation in cod (Gadus morhua) during combined and isolated exposures to hypercapnia and copper. Mar. Biol., 128, 337–346.CrossRefGoogle Scholar
  43. Lin, H., D. C. Pfeiffer, A. W. Vogl, J. Pau and D. J. Randall (1994): Immunolocalization of proton ATP-ase in the gill epithelia of rainbow trout. J. Exp. Biol., 195, 169–183.Google Scholar
  44. Lutz, P. L. and G. E. Nilsson (1997): Contrasting strategies for anoxic brain survival--glycolysis up or down. J. Exp. Biol., 200, 411–419.Google Scholar
  45. Marchetti, C. (1977): On geoengineering and the CO 2 problem. Climatic Change, 1, 59–68.CrossRefGoogle Scholar
  46. Marchetti, C. (1979): Constructive solutions to the CO 2 problem. p. 299–311. In Man's Impact on Climate, ed. by W. Bach, J. Pankrath and W. Kellogg, Elsevier Science Publ., Amsterdam.CrossRefGoogle Scholar
  47. McKendry, J. E., W. K. Milsom and S. F. Perry (2001): Branchial CO 2 receptors and cardiorespiratory adjustments during hypercarbia in Pacific spiny dogfish (Squalus acanthias). J. Exp. Biol., 204, 1519–1527.Google Scholar
  48. McKenzie, D. J., E. W. Taylor, A. Z. Dalla Valle and J. F. Steffensen (2002): Tolerance of acute hypercapnic acidosis by the European eel (Anguilla anguilla). J. Comp. Physiol.B, 172, 339–346.CrossRefGoogle Scholar
  49. O'Dor, R. K. and D. M. Webber (1986): The constraints on cephalopods: why squid aren't fish. Can. J. Zool., 64, 1591–1605.CrossRefGoogle Scholar
  50. Ohsumi, T. (1995): CO 2 storage options in the deep sea. Mar. Technol. Soc. J., 29, 58–66.Google Scholar
  51. Parmesan, C. and G. Yohe (2003): A globally coherent finger-print of climate change impacts across natural systems. Nature, 421, 37–42.CrossRefGoogle Scholar
  52. Pörtner, H. O. (1990): An analysis of the effects of pH on oxygen binding by squid (Illex illecebrosus, Loligo pealei) haemocyanin. J. Exp. Biol., 150, 407–424.Google Scholar
  53. Pörtner, H. O. (1994): Coordination of metabolism, acid-base regulation and haemocyanin function in cephalopods. Mar. Freshw. Behav. Phy., 25, 131–148.CrossRefGoogle Scholar
  54. Pörtner, H. O. (2001): Climate change and temperature dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften, 88, 137–146.CrossRefGoogle Scholar
  55. Pörtner, H. O. (2002): Climate change and temperature dependent biogeography: systemic to molecular hierarchies of thermal tolerance in animals. Comp. Biochem. Physiol., 132,A739–761.CrossRefGoogle Scholar
  56. Pörtner, H. O. (2004): Climate variability and the energetic pathways of evolution: the origin of endothermy in mammals and birds. Physiol. Biochem. Zool. (in press).Google Scholar
  57. Pörtner, H. O. and M. K. Grieshaber (1993): Characteristics of the critical PO 2 (s): gas exchange, metabolic rate and the mode of energy production. p. 330–357. In The VertebrateGas Transport Cascade: Adaptations to Environment andMode of Life, ed. by J. E. P. W. Bicudo, CRC Press Inc., Boca Raton (FL), U.S.A.Google Scholar
  58. Pörtner, H. O. and A. Reipschläger (1996): Ocean disposal of anthropogenic CO 2: physiological effects on tolerant and intolerant animals. p. 57–81. In Ocean Storage of CO 2 Environmental Impact, ed. by B. Ormerod and M. Angel, Massachusetts Institute of Technology and International Energy Agency, Greenhouse Gas R&D Programme, Chel-tenham/Boston.Google Scholar
  59. Pörtner, H. O. and S. Zielinski (1998): Environmental constraints and the physiology of performance in squids. p. 207–221. In Cephalopod Biodiversity, Ecology and Evolution, ed. by A. I. L. Payne, M. R. Lipinski, M. R. Clarke and M. A. C. Roeleveld, South African Journal of Marine Science, 20.Google Scholar
  60. Pörtner, H. O., A. Reipschläger and N. Heisler (1998): Metabolism and acid-base regulation in Sipunculus nudus as a function of ambient carbon dioxide. J. Exp. Biol., 201, 43–55.Google Scholar
  61. Pörtner, H. O., C. Bock and A. Reipschläger (2000): Modulation of the cost of pHi regulation during metabolic depression: a 31P-NMR study in invertebrate (Sipunculus nudus) isolated muscle. J. Exp. Biol. 203, 2417–2428.Google Scholar
  62. Potts, W. T. W. (1994): Kinetics of sodium uptake in freshwater animals--a comparison of ion-exchange and proton pump hypotheses. Am. J. Physiol., 266, R315–R320.Google Scholar
  63. Redfield, A. C. and R. Goodkind (1929): The significance of the Bohr effect on the respiration and asphyxiation of the squid, Loligo pealei. J. Exp. Biol., 6, 340–349.Google Scholar
  64. Reipschläger, A. and H. O. Pörtner (1996): Metabolic depression during environmental stress: the role of extra-versus intracellular pH in Sipunculus nudus. J. Exp. Biol., 199, 1801–1807.Google Scholar
  65. Reipschläger, A., G. E. Nilsson and H. O. Pörtner (1997): Ad-enosine is a mediator of metabolic depression in the marine worm Sipunculus nudus. Am. J. Physiol., 272, R350–R356.Google Scholar
  66. Riebesell, U., D. A. Wolf-Gladrow and V. Smetacek (1993): Carbon dioxide limitation of marine phytoplankton growth rates. Nature, 361, 249–251.CrossRefGoogle Scholar
  67. Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe and F. M. Morel (2000): Reduced calcification of marine Plankton in response to increased atmospheric CO 2. Nature, 407, 364–367.CrossRefGoogle Scholar
  68. Sanders, N. K. and J. J. Childress (1990): A comparison of the respiratory function of the hemocyanins of vertically mi-grating and non-migrating oplophorid shrimps. J. Exp. Biol., 152, 167–187.Google Scholar
  69. Scheid, P., H. Shams and J. Piper (1989): Gas exchange in vertebrates. Verh. Dtsch. Zool. Ges., 82, 57–68.Google Scholar
  70. Seibel, B. A. and P. J. Walsh (2001): Potential impacts of CO 2 injections on deep-sea biota. Science, 294, 319–320.CrossRefGoogle Scholar
  71. Seibel, B. A., E. V. Thuesen, J. J. Childress and L. A. Gorodezky (1997): Decline in pelagic cephalopod metabolism with habitat depth reflects differences in locomotory efficiency. Biol. Bull., 192, 262–278.CrossRefGoogle Scholar
  72. Shirayama, Y. (1995): Current status of deep-sea biology in relation to the CO 2 disposal. p. 253–264. In Direct Ocean Disposal of Carbon Dioxide, ed. by N. Handa and T. Oshumi, TERRAPUB, Tokyo.Google Scholar
  73. Shirayama, Y. (2002): Towards comprehensive understanding of impacts on marine organisms due to raised CO 2 concen-tration. In Proceedings of the 5th International Symposiumon CO 2 Fixation and Efficient Utilization of Energy, Tokyo Institute of Technology, Tokyo.Google Scholar
  74. Tamburri, M. N., E. T. Peltzer, G. E. Friedrich, I. Aya, K. Yamane. and P. G. Brewer (2000): A field study of the effects of CO 2 ocean disposal on mobile deep-sea animals. Mar. Chem., 72, 95–101.CrossRefGoogle Scholar
  75. Tamburrini, M., M. Romano, V. Carratore, A. Kunzmann, M. Coletta and G. di Prisco (1998): The hemoglobins of the Antarctic fishes Artedidraco orianae and Pogonophryne scotti. J. Biol. Chem., 273(49), 32452–32459.CrossRefGoogle Scholar
  76. Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. N. Erasmus, M. Ferreira de Siqueira, A. Grainger, L. Havannah, L. Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. Townsend Peterson, O. L. Phillips and S. E. Williams (2004): Extinction risk from climate change. Nature, 427, 145–148.CrossRefGoogle Scholar
  77. Torres, J. J. and G. N. Somero (1988): Vertical distribution and metabolism in Antarctic mesopelagic fishes. Comp.Biochem. Physiol., 90B, 521–528.Google Scholar
  78. Truchot, J. P. (1979) Mechanisms of compensation of blood respiratory acid-base disturbances in the shore crab Carcinus maenas (L.). J. Exp. Zool., 210, 407–416.CrossRefGoogle Scholar
  79. van Dijk, P. L. M., C. Tesch, I. Hardewig and H. O. Pörtner (1999): Physiological disturbances at critically high temperatures. A comparison between stenothermal Antarctic, and eurythermal temperate eelpouts (Zoarcidae). J. Exp.Biol., 202, 3611–3621.Google Scholar
  80. Vinogradov, G. A. and V. T. Komov (1985): Ion regulation in the perch, Perca fluviatilis, in connection with the problem of acidification of water bodies. J. Ichthyol., 25, 53–61.Google Scholar
  81. Wells, R. M. G., M. D. Ashby, S. J. Duncan and J. A. Macdonald (1980): Comparative study of the erythrocytes and haemoglobins of nototheniid fishes from Antarctica. J. Fish Biol., 17, 517–527.CrossRefGoogle Scholar
  82. Wheatly, M. G. (1989): Physiological response of the crayfish Pacifasticus leniusculus (Dana) to environmental hypoxia. I. Extracellular acid-base and electrolyte status and trans-branchial exchange. J. Exp. Biol., 57, 673–680.Google Scholar
  83. Whiteley, N. M., J. L. Scott, S. J. Breeze and L. McCann (2001): Effects of water salinity on acid-base balance in decapod crustaceans. J. Exp. Biol., 204, 1003–1011.Google Scholar
  84. Wickins, J. F. (1984): The effect of hypercapnic sea water on growth and mineralization in penaeid prawns. Aquaculture, 41, 37–48.CrossRefGoogle Scholar
  85. Wigley, T. M. L., R. Richels and J. A. Edmonds (1996): Economic and environmental choices in the stabilization of atmospheric CO 2 concentrations. Nature, 379, 240–243.CrossRefGoogle Scholar
  86. Wolf-Gladrow, D. A., U. Riebesell, S. Burkhardt and J. Bijma (1999): Direct effects of CO 2 concentration on growth and isotopic composition of marine plankton. Tellus, 51B, 461–476.CrossRefGoogle Scholar
  87. Wood, C. M., C. L. Milligan and P. J. Walsh (1999): Renal responses of trout to chronic respiratory and metabolic acidosis and metabolic alkalosis. Am. J. Physiol., 46, R482–R492.Google Scholar
  88. Wood, C. M., B. Wilson, H. L. Bergman, A. N. Berman, P. Laurent, G. Otiang'a-Owite and P. J. Walsh (2002): Obligatory urea production and the cost of living in the Magadi tilapia revealed by acclimation to reduced salinity and al-kalinity. Physiol. Biochem. Zool., 75(2), 111–122.CrossRefGoogle Scholar
  89. Zielinski, S., F. J. Sartoris and H. O. Pörtner (2001): Temperature effects on hemocyanin oxygen binding in an Antarctic cephalopod. Biol. Bull., 200, 67–76.CrossRefGoogle Scholar

Copyright information

© The Oceanographic Society of Japan 2004

Authors and Affiliations

  • Hans O. Pörtner
    • 1
  • Martina Langenbuch
    • 1
  • Anke Reipschläger
    • 1
  1. 1.Alfred-Wegener-Institut für Polar- und MeeresforschungBremerhavenGermany

Personalised recommendations