Skip to main content
Log in

Identification of Seven-coordinate LnIII Ions in a LnIII[15-MCFeIIIN(shi)-5](OAc)2Cl Species Crystallized from Methanol and Pyridine

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The title metallacrown (MC) complexes LnIII[15-MCFeIIIN(shi)-5](OAc)2Cl(C5H5N)6 (Ln1), where OAc is acetate, shi3− is salicylhydroximate, and Ln = Gd and Dy, were synthesized via a self-assembly reaction in methanol and pyridine. Single crystals were grown using slow evaporation and characterized using X-ray diffraction. Seven-coordinate capped octahedron geometries were observed for the lanthanide ion in both complexes, which is uncommon for trivalent lanthanide species. The 15-MC-5 is a ruffled metallacrown archetype similar to previously reported mixed-valent manganese metallacrowns.

Graphic Abstract

The title metallacrown (MC) complexes LnIII[15-MCFeIIIN(shi)-5](OAc)2Cl(C5H5N)6 (Ln1), where OAc is acetate, shi3− is salicylhydroximate, and Ln = Gd and Dy, contains seven-coordinate capped octahedron geometries for the lanthanide ion in both complexes, which is uncommon for trivalent lanthanide species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Single-crystal diffraction data are available in CIF format free of charge at www.ccdc.cam.ac.uk using deposition numbers 2083355 and 2083356.

Code Availability

Not applicable.

References

  1. Bünzli JG, Eliseeva SV (2011) Basics of Lanthanide Photophysics. In: Hanninen P, Harma H (eds) Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects. Springer, Berlin, pp 1–45

    Google Scholar 

  2. Rinehart JD, Fang M, Evans WJ, Long JR (2011) A N 2 3– radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. J Am Chem Soc 133:14236–14239. https://doi.org/10.1021/ja206286h

    Article  CAS  PubMed  Google Scholar 

  3. Rinehart JD, Fang M, Evans WJ, Long JR (2011) Strong exchange and magnetic blocking in N23−-radical-bridged lanthanide complexes. Nat Chem 3:538–542. https://doi.org/10.1038/nchem.1063

    Article  CAS  PubMed  Google Scholar 

  4. Woodruff DN, Winpenny REP, Layfield RA (2013) Lanthanide single-molecule magnets. Chem Rev 113:5110–5148. https://doi.org/10.1021/cr400018q

    Article  CAS  PubMed  Google Scholar 

  5. Winpenny REP (2008) Quantum information processing using molecular nanomagnets as qubits. Angew Chemie - Int Ed 47:7992–7994. https://doi.org/10.1002/anie.200802742

    Article  CAS  Google Scholar 

  6. Bogani L, Wernsdorfer W (2008) Molecular spintronics using single-molecule magnets. Nat Mater 7:179–186. https://doi.org/10.1038/nmat2133

    Article  CAS  PubMed  Google Scholar 

  7. Pierre VC, Allen MJ (2017) Contrast Agents for MRI. Royal Society of Chemistry, Cambridge

    Book  Google Scholar 

  8. Zheng YZ, Pineda EM, Helliwell M, Winpenny REP (2012) Mn II-Gd III phosphonate cages with a large magnetocaloric effect. Chem - A Eur J 18:4161–4165. https://doi.org/10.1002/chem.201200152

    Article  CAS  Google Scholar 

  9. Sessoli R (2012) Chilling with magnetic molecules. Angew Chemie - Int Ed 51:43–45. https://doi.org/10.1002/anie.201104448

    Article  CAS  Google Scholar 

  10. Gao F, Cui L, Song Y et al (2014) Calix[4]arene-supported mononuclear lanthanide single-molecule magnet. Inorg Chem 53:562–567. https://doi.org/10.1021/ic4026624

    Article  CAS  PubMed  Google Scholar 

  11. Gschneidner KA, Pecharsky VK (2000) Magnetocaloric materials. Annu Rev Mater Sci 30:387–429

    Article  CAS  Google Scholar 

  12. Lorusso G, Roubeau O, Evangelisti M (2016) Rotating magnetocaloric effect in an anisotropic molecular dimer. Angew Chemie - Int Ed 55:3360–3363. https://doi.org/10.1002/anie.201510468

    Article  CAS  Google Scholar 

  13. Das C, Vaidya S, Gupta T et al (2015) Single-molecule magnetism, enhanced magnetocaloric effect, and toroidal magnetic moments in a family of Ln 4 Squares. Chem - A Eur J 21:15639–15650. https://doi.org/10.1002/chem.201502720

    Article  CAS  Google Scholar 

  14. Romero Gómez J, Ferreiro Garcia R, Catoira DM, a., Romero Gómez M, (2013) Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration. Renew Sustain Energy Rev 17:74–82. https://doi.org/10.1016/j.rser.2012.09.027

    Article  Google Scholar 

  15. Ishikawa N, Sugita M, Ishikawa T et al (2003) Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J Am Chem Soc 125:8694–8695. https://doi.org/10.1021/ja029629n

    Article  CAS  PubMed  Google Scholar 

  16. Rinehart JD, Long JR (2011) Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem Sci 2:2078. https://doi.org/10.1039/c1sc00513h

    Article  CAS  Google Scholar 

  17. Huang C (2010) Rare Earth Coordination Chemistry. John Wiley & Sons Ltd, Chichester UK

    Book  Google Scholar 

  18. Ferreira da Rosa PP, Kitagawa Y, Hasegawa Y (2020) Luminescent lanthanide complex with seven-coordination geometry. Coord Chem Rev 406:4–12. https://doi.org/10.1016/j.ccr.2019.213153

    Article  CAS  Google Scholar 

  19. Molloy JK, Fedele L, Jarjayes O et al (2018) Structural and spectroscopic investigations of redox active seven coordinate luminescent lanthanide complexes. Inorganica Chim Acta 483:609–617. https://doi.org/10.1016/j.ica.2018.08.054

    Article  CAS  Google Scholar 

  20. Molloy JK, Philouze C, Fedele L et al (2018) Seven-coordinate lanthanide complexes with a tripodal redox active ligand: structural, electrochemical and spectroscopic investigations. Dalt Trans 47:10742–10751. https://doi.org/10.1039/c8dt01165f

    Article  CAS  Google Scholar 

  21. Bar AK, Kalita P, Singh MK et al (2018) Low-coordinate mononuclear lanthanide complexes as molecular nanomagnets. Coord Chem Rev 367:163–216. https://doi.org/10.1016/j.ccr.2018.03.022

    Article  CAS  Google Scholar 

  22. Gao F, Cui L, Liu W et al (2013) Seven-coordinate lanthanide sandwich-type complexes with a tetrathiafulvalene-fused schiff base ligand. Inorg Chem 52:11164–11172. https://doi.org/10.1021/ic401421h

    Article  CAS  PubMed  Google Scholar 

  23. Gao F, Yao MX, Li YY et al (2013) Syntheses, structures, and magnetic properties of seven-coordinate lanthanide porphyrinate or phthalocyaninate complexes with Kläui’s tripodal ligand. Inorg Chem 52:6407–6416. https://doi.org/10.1021/ic400245n

    Article  CAS  PubMed  Google Scholar 

  24. Lah MS, Pecoraro VL (1989) Isolation and Characterization of {MnII[MnIII(salicylhydroimate)]4(acetate)2(DMF)6}.2DMF: An Inorganic Analogue of M2+(12-crown-4). J Am Chem Soc 111:7258–7259

    Article  CAS  Google Scholar 

  25. Mezei G, Zaleski CM, Pecoraro VL (2007) Structural and functional evolutions of metallacrowns. Chem Rev 107:4933–5003. https://doi.org/10.1021/cr078200h

    Article  CAS  PubMed  Google Scholar 

  26. Chow CY, Trivedi ER, Pecoraro V, Zaleski CM (2015) Heterometallic mixed 3d–4f metallacrowns: structural versatility, luminescence, and molecular magnetism. Comments Inorg Chem 35:214–253. https://doi.org/10.1080/02603594.2014.981811

    Article  CAS  Google Scholar 

  27. Lutter JC, Zaleski CM, Pecoraro VL (2018) Metallacrowns: Supramolecular Constructs with potential in extended solids, solution-state dynamics, molecular magnetism, and Imaging. In: van Eldik R, Puchta R (eds) Advances in Inorganic Chemistry, Vol 71 Supramolecular Chemistry. Elsevier, NJ, pp 177–246

    Google Scholar 

  28. Jankolovits J, Andolina CM, Kampf JW et al (2011) Assembly of near-infrared luminescent lanthanide host(host-guest) complexes with a metallacrown sandwich motif. Angew Chemie Int Ed 50:9660–9664. https://doi.org/10.1002/anie.201103851

    Article  CAS  Google Scholar 

  29. Trivedi ER, Eliseeva SV, Jankolovits J et al (2014) Highly emitting near-infrared lanthanide “encapsulated sandwich” metallacrown complexes with excitation shifted toward lower energy. J Am Chem Soc 136:1526–1534. https://doi.org/10.1021/ja4113337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chow CY, Eliseeva SV, Trivedi ER et al (2016) Ga 3+ /Ln 3+ Metallacrowns: a promising family of highly luminescent lanthanide complexes that covers visible and near-infrared domains. J Am Chem Soc 138:5100–5109. https://doi.org/10.1021/jacs.6b00984

    Article  CAS  PubMed  Google Scholar 

  31. Lutter JC, Eliseeva SV, Kampf JW et al (2018) A Unique Ln III [3.3.1]Ga III metallacryptate series that possesses properties of slow magnetic relaxation and visible/near-infrared luminescence. Chem - A Eur J 24:10773–10783. https://doi.org/10.1002/chem.201801355

    Article  CAS  Google Scholar 

  32. Lutter JC, Eliseeva SV, Collet G et al (2020) Iodinated metallacrowns: toward combined bimodal near-infrared and X-ray contrast imaging agents. Chem - A Eur J 26:1274–1277. https://doi.org/10.1002/chem.201905241

    Article  CAS  Google Scholar 

  33. Lutter JC, Lopez Bermudez BA, Nguyen TN et al (2019) Functionalization of luminescent lanthanide-gallium metallacrowns using copper-catalyzed alkyne-azide cycloaddition and thiol-maleimide Michael addition. J Inorg Biochem. https://doi.org/10.1016/j.jinorgbio.2018.12.011

    Article  PubMed  Google Scholar 

  34. Nguyen TN, Eliseeva SV, Chow CY et al (2020) Peculiarities of crystal structures and photophysical properties of GaIII/LnIII metallacrowns with a non-planar [12-MC-4] core. Inorg Chem Front 7:1553–1563. https://doi.org/10.1039/c9qi01647c

    Article  CAS  Google Scholar 

  35. Martinić I, Eliseeva SV, Nguyen TN et al (2017) Near-infrared optical imaging of necrotic cells by photostable lanthanide-based metallacrowns. J Am Chem Soc 139:8388–8391. https://doi.org/10.1021/jacs.7b01587

    Article  CAS  PubMed  Google Scholar 

  36. Martinić I, Eliseeva SV, Nguyen TN et al (2017) Near-infrared luminescent metallacrowns for combined in vitro cell fixation and counter staining. Chem Sci 8:6042–6050. https://doi.org/10.1039/C7SC01872J

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zaleski CM, Tricard S, Depperman EC et al (2011) Single molecule magnet behavior of a pentanuclear mn-based metallacrown complex: solid state and solution magnetic studies. Inorg Chem 50:11348–11352. https://doi.org/10.1021/ic2008792

    Article  CAS  PubMed  Google Scholar 

  38. Boron TT, Lutter JC, Daly CI et al (2016) The nature of the bridging anion controls the single-molecule magnetic properties of DyX 4 M 12-Metallacrown-4 complexes. Inorg Chem 55:10597–10607. https://doi.org/10.1021/acs.inorgchem.6b01832

    Article  CAS  PubMed  Google Scholar 

  39. Chow CY, Guillot R, Rivière E et al (2016) Synthesis and magnetic characterization of Fe(III)-Based 9-Metallacrown-3 complexes which exhibit magnetorefrigerant properties. Inorg Chem 55:10238–10247. https://doi.org/10.1021/acs.inorgchem.6b01404

    Article  CAS  PubMed  Google Scholar 

  40. Lutter JC, Boron TT, Chadwick KE et al (2021) Identification of slow magnetic relaxation and magnetocoolant capabilities of heterobimetallic lanthanide-manganese metallacrown-like compounds. Polyhedron 202:115190. https://doi.org/10.1016/j.poly.2021.115190

    Article  CAS  Google Scholar 

  41. Sheldrick GM (2015) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Adv 71:3–8. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  42. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  43. Llunell M, Casanova D, Cirera J, et al (2013) SHAPE, version 2.1; Barcelona, Spain.

  44. Addison AW, Rao TN, Reedijk J et al (1984) Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J Chem Soc, Dalt Trans. https://doi.org/10.1039/DT9840001349

    Article  Google Scholar 

  45. Liu W, Thorp HH (1993) Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. 2. Refined distances and other enzymes. Inorg Chem 32:4102–4105. https://doi.org/10.1021/ic00071a023

    Article  CAS  Google Scholar 

  46. Zheng H, Langner KM, Shields GP et al (2017) Data mining of iron(II) and iron(III) bond-valence parameters, and their relevance for macromolecular crystallography. Acta Crystallogr Sect D Struct Biol 73:316–325. https://doi.org/10.1107/S2059798317000584

    Article  CAS  Google Scholar 

  47. Zaleski CM, Lim C-S, Cutland-Van Noord AD et al (2011) Effects of the Central Lanthanide Ion Crystal Radius on the 15-MC Cu II (N)pheHA -5 Structure. Inorg Chem 50:7707–7717. https://doi.org/10.1021/ic200740h

    Article  CAS  PubMed  Google Scholar 

  48. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  49. Trzesowska A, Kruszynski R, Bartczak TJ (2004) New bond-valence parameters for lanthanides. Acta Crystallogr Sect B Struct Sci 60:174–178. https://doi.org/10.1107/S0108768104002678

    Article  CAS  Google Scholar 

  50. Kessisoglou DP, Kampf J, Pecoraro VL (1994) Compositional and geometrical isomers of 15-metallacrowns-5 complexes. Polyhedron 13:1379–1391. https://doi.org/10.1016/S0277-5387(00)81704-0

    Article  Google Scholar 

  51. Emerich B, Smith M, Zeller M, Zaleski CM (2010) Synthesis and Crystal Structure of MnII(OAc)2[15-MC Mn III (N)shi-5](Im)3(EtOH)3 (shi3− = salicylhydroximate, −OAc = acetate, Im = imidazole, and EtOH = ethanol). J Chem Crystallogr 40:769–777. https://doi.org/10.1007/s10870-010-9735-5

    Article  CAS  Google Scholar 

  52. Tigyer BR, Zeller M, Zaleski CM (2012) Pentakis(μ 3 - N,2-dioxidobenzene-1-carboximidato)di-μ 2 -formato-pentakis(1 H -imidazole)methanolpentamanganese(III)manganese(II)–methanol–water (1/3.36/0.65). Acta Crystallogr Sect E Struct Reports Online 68:m1521–m1522. https://doi.org/10.1107/S1600536812047228

    Article  CAS  Google Scholar 

  53. Tigyer BR, Zeller M, Zaleski CM (2013) μ 3 -Acetato-μ 2 -acetato-(dimethylformamide)pentakis(μ- N,2-dioxidobenzene-1-carboximidato)pentakis(1-methyl-1 H -imidazole)pentamanganese(III)manganese(II)–diethyl ether–dimethylformamide–methanol–water (1/1/1/1/0.49. Acta Crystallogr Sect E Struct Reports Online 69:m393–m394. https://doi.org/10.1107/S1600536813015857

    Article  CAS  Google Scholar 

  54. Tigyer BR, Zeller M, Zaleski CM (2011) Di-μ-acetato-bis(dimethylformamide)pentakis(μ- N,2-dioxidobenzene-1-carboximidato)tetrakis(1-ethylimidazole)pentamanganese(III)manganese(II)–diethyl ether–dimethylforamide–methanol–water (1/1/1/1/0.12). Acta Crystallogr Sect E Struct Reports Online 67:m1041–m1042. https://doi.org/10.1107/S160053681102602X

    Article  CAS  Google Scholar 

  55. Lutter JC, Kampf JW, Zeller M, Zaleski CM (2013) Bis(dimethylformamide)pentakis(μ- N,2-dioxidobenzene-1-carboximidato)tetrakis(1-methylimidazole)di-μ-propionato-pentamanganese(III)manganese(II)–dimethylformamide–methanol (1/0.24/1.36). Acta Crystallogr Sect E Struct Reports Online 69:m483–m484. https://doi.org/10.1107/S1600536813021314

    Article  CAS  Google Scholar 

  56. Dassault Sytèmes Biovia Corp. Discovery Studio 2021, version 21.1.0.20298, Vélizy-Villacoublay, France.

Download references

Acknowledgements

JCL was partially supported by Wayne State University, and MJA gratefully acknowledges the National Institutes of Health (EB027103)

Author information

Authors and Affiliations

Authors

Contributions

EB synthesized the complexes; CLW collected single-crystal X-ray diffraction data and offered advice for HKLF5 refinement; MJA contributed to the manuscript draft; and JCL solved and refined diffraction data, interpreted characterization data, and drafted the manuscript.

Corresponding author

Correspondence to Jacob C. Lutter.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest to declare.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 750 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biros, E.S., Ward, C.L., Allen, M.J. et al. Identification of Seven-coordinate LnIII Ions in a LnIII[15-MCFeIIIN(shi)-5](OAc)2Cl Species Crystallized from Methanol and Pyridine. J Chem Crystallogr 52, 152–160 (2022). https://doi.org/10.1007/s10870-021-00900-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-021-00900-6

Keywords

Navigation