Advertisement

Understanding the Formation of Novel Hydrated Gallic Acid-Creatinine Molecular Salt: Crystal Structure, Hirshfeld Surface and DFT Studies

  • K. L. Jyothi
  • Mahesha
  • N. K. LokanathEmail author
Original Paper

Abstract

Creatinine, an aliphatic hetero monocyclic compound, plays an important role in the protein metabolism and change in its physiological normal concentration leads to diabetic nephropathy, renal failure and muscle disorder. In this work, a novel molecular salt form (ionic cocrystal) of creatinine (CR) with gallic acid (GA) has been obtained and preliminarily characterized by PXRD, FTIR and the crystal structure was confirmed by X-ray diffraction method. The presence of a single C–O stretching band in the place of two stretching bands [C=O and C–O] in the infrared spectrum confirms the formation of molecular salt. The asymmetric unit of GA–CR ionic cocrystal [(C7H5O5) (C4H8N3O)+ 3(H2O)] comprises of a molecule of gallic acid, a molecule of creatinine and three water molecules. The structural analysis reveals the strong hydrogen bond DDAA environment of water molecules which confirms the presence of different supramolecular architectures. Thermal gravimetric analysis was carried out to investigate the presence of water/solvent molecules in the molecular salt. Further, the intermolecular interactions in stabilizing the molecular salt were analyzed using Hirshfeld surfaces. Furthermore, the coordinates of molecular salt were optimized by DFT calculations using APFD hybrid functional with 6-311 + G(d,p) level basis set. Frontier molecular orbitals, energy gap and related molecular properties were also analyzed. GA–CR pharmaceutical molecular salt form is found to be more reactive than CR and therefore offers an innovative approach for the futuristic drug design.

Graphic Abstract

Strong hydrogen-bond DDAA environment (D: donor, A: acceptor) exhibited by the water molecules in the GA–CR molecular salt play a major role in stabilizing the crystal structure.

Keywords

Molecular salt Supramolecular architectures Hirshfeld surface Density functional theory 

Notes

Acknowledgements

Authors would like to thank the National Single Crystal diffractometer Facility, UGC-MRP project (MRP-Phys2013-32718), Department of Studies in Physics, University of Mysore, Mysuru for providing computational facilities. Authors also thank the Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru for providing infrastructure and instrumentation facilities.

Supplementary material

10870_2019_814_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1479 kb)

References

  1. 1.
    Schultheiss N, Newman A (2009) Cryst Growth Des 9:2950–2967PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ (2006) J Pharm Sci 95:499–516PubMedCrossRefGoogle Scholar
  3. 3.
    Lu J, Rohani S (2009) Curr Med Chem 16:884–905PubMedCrossRefGoogle Scholar
  4. 4.
    Yadav AV, Shete AS, Dabke AP, Kulkarni PV, Sakhare SS (2009) Indian J Pharm Sci 71:359PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Elder DP, Holm R, de Diego HL (2013) Int J Pharm 453:88–100PubMedCrossRefGoogle Scholar
  6. 6.
    Stoimenovski J, MacFarlane DR, Bica K, Rogers RD (2010) Pharm Res 27:521–526PubMedCrossRefGoogle Scholar
  7. 7.
    Blagden N, de Matas M, Gavan PT, York P (2007) Adv Drug Deliv Rev 59:617–630PubMedCrossRefGoogle Scholar
  8. 8.
    Tsai HA, Syu MJ (2005) Biomaterials 26:2759–2766PubMedCrossRefGoogle Scholar
  9. 9.
    Du Pre S, Mendel H (1955) Acta Crystallogr 8:311–313CrossRefGoogle Scholar
  10. 10.
    Smith G, White JM (2001) Aust J Chem 54:97–100CrossRefGoogle Scholar
  11. 11.
    Goswami S, Jana S, Hazra A, Fun HK, Anjum S (2006) Cryst Eng Commun 8:712–718CrossRefGoogle Scholar
  12. 12.
    Rychkov D, Boldyreva EV, Tumanov NA (2013) Acta Crystallogr C 69:1055–1061PubMedCrossRefGoogle Scholar
  13. 13.
    Shen FM, Lush SF (2010) Acta Crystallogr E 66:o2056–o2057CrossRefGoogle Scholar
  14. 14.
    Su KM, Li ZH (2007) Acta Crystallogr E 63:o4512–o4512CrossRefGoogle Scholar
  15. 15.
    Atencio R, Chacón M, González T, Briceño A, Agrifoglio G, Sierraalta A (2004) Dalton Trans 4:505–513CrossRefGoogle Scholar
  16. 16.
    Li YP, Yang P (2007) Chin J Chem 25:1715–1721CrossRefGoogle Scholar
  17. 17.
    Perpétuo GJ, Janczak J (2008) J Mol Struct 891:429–436CrossRefGoogle Scholar
  18. 18.
    Mekala R, Jagdish P, Mathammal R (2018) J Mol Struct 1164:501–515CrossRefGoogle Scholar
  19. 19.
    Liu LD, Liu SL, Liu ZX, Hou GG (2016) Mol Struct 1112:1–8CrossRefGoogle Scholar
  20. 20.
    Braga D, Maini L, Grepioni F (2013) Chem Soc Rev 42:7638–7648PubMedCrossRefGoogle Scholar
  21. 21.
    Steed JW (2013) Trends Pharmacol Sci 34:185–193PubMedCrossRefGoogle Scholar
  22. 22.
    Lee T, Wang PY (2010) Cryst Growth Des 10:1419–1434CrossRefGoogle Scholar
  23. 23.
    Stanton MK, Bak A (2008) Cryst Growth Des 8:3856–3862CrossRefGoogle Scholar
  24. 24.
    Grobelny P, Mukherjee A, Desiraju GR (2011) Cryst Eng Commun 13:4358–4364CrossRefGoogle Scholar
  25. 25.
    Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H (2009) J Appl Cryst 42:339–341CrossRefGoogle Scholar
  26. 26.
    Spek AL (1990) Acta Crystallogr A 46:c34–c34Google Scholar
  27. 27.
    Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, Streek JV, Wood PA (2008) J Appl Crystallogr 41:466–470CrossRefGoogle Scholar
  28. 28.
    Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2018) CrystalExplorer. University of Western Australia, PerthGoogle Scholar
  29. 29.
    BelhajSalah S, Abdelbaky MS, García-Granda S, Essalah K, Nasr CB, Mrad ML (2018) J Mol Struct 1152:276–286CrossRefGoogle Scholar
  30. 30.
    Seth SK, Saha I, Estarellas C, Frontera A, Kar T, Mukhopadhyay S (2011) Cryst Growth Des 11:3250–3265CrossRefGoogle Scholar
  31. 31.
    Luo YH, Zhang CG, Xu B, Sun BW (2012) Cryst Eng Commun 14:6860–6868CrossRefGoogle Scholar
  32. 32.
    McKinnon JJ, Jayatilaka D, Spackman MA (2007) Chem Commun 37:3814–3816CrossRefGoogle Scholar
  33. 33.
    Mackenzie CF, Spackman PR, Jayatilaka D, Spackman MA (2017) IUCrJ 4:575–587PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Fox DJ et al (2010) Gaussian 16, Revision B.01. Gaussian, Inc., WallingfordGoogle Scholar
  35. 35.
    Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem Inc., Shawnee Mission, KSGoogle Scholar
  36. 36.
    Koopmans T (1934) Physica 1:104–113CrossRefGoogle Scholar
  37. 37.
    Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G (2011) Int J Pharm 41:91–111Google Scholar
  38. 38.
    Childs SL, Stahly GP, Park A (2007) Mol Pharm 4:323–338PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Mohamed S, Tocher DA, Vickers M, Karamertzanis PG, Price SL (2009) Cryst Growth Des 9:2881–2889CrossRefGoogle Scholar
  40. 40.
    Lee SM, Halcovitch NR, Jotani MM, Tiekink ER (2017) Acta Crystallogr E 73:630–636CrossRefGoogle Scholar
  41. 41.
    Biswas S, Saha R, Steele IM, Kumar S, Dey K (2013) J Chem Crystallogr 43:493–501CrossRefGoogle Scholar
  42. 42.
    Jyothi KL, Gautam R, Swain D, Guru Row TN, Lokanath NK (2019) Cryst Res Technol 54:1900016CrossRefGoogle Scholar
  43. 43.
    Chen PY, Zhang L, Zhu SG, Cheng GB (2015) Crystals 5:346–354CrossRefGoogle Scholar
  44. 44.
    Hema MK, Karthik CS, Manukumar HN, Kumara K, Pampa KJ, Lingappa M, Mallu P, Lokanath NK (2019) Inorg Chim Acta 484:227–236CrossRefGoogle Scholar
  45. 45.
    Rychkov D, Arkhipov S, Boldyreva E (2016) Acta Crystallogr B 72:160–163CrossRefGoogle Scholar
  46. 46.
    Thomas SP, Shi MW, Koutsantonis GA, Jayatilaka D, Edwards AJ, Spackman MA (2017) Angew Chem 56:8468–8472CrossRefGoogle Scholar
  47. 47.
    Hema MK, Karthik CS, Pampa KJ, Manukumar HM, Mallu P, Warad I, Lokanath NK (2019) Polyhedron 168:127–137CrossRefGoogle Scholar
  48. 48.
    Rybarczyk-Pirek AJ, Checinska L, Małecka M, Wojtulewski S (2013) Cryst Growth Des 13:3913–3924CrossRefGoogle Scholar
  49. 49.
    Chethan Prathap KN, Lokanath NK (2018) J Mol Struct 1171:564–577CrossRefGoogle Scholar
  50. 50.
    Kumara K, Kumar AD, Naveen S, Kumar KA, Lokanath NK (2018) J Mol Struct 1161:285–298CrossRefGoogle Scholar
  51. 51.
    Jasmine NJ, Arunagiri C, Subashini A, Stanley N, Muthiah PT (2017) J Mol Struct 1130:244–250CrossRefGoogle Scholar
  52. 52.
    Marinescu M, Tudorache DG, Marton GI, Zalaru CM, Popa M, Chifiriuc MC, Stavarache CE, Constantinescu C (2017) J Mol Struct 1130:463–471CrossRefGoogle Scholar
  53. 53.
    Ramachandran S, Velraj G (2013) Rom J Phys 58:305–318Google Scholar
  54. 54.
    Kaur R, Ponraj B, Swain D, Varma KB, Guru Row TN (2015) Cryst Growth Des 15:4171–4176CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Studies in Physics, ManasagangotriUniversity of MysoreMysuruIndia
  2. 2.Department of PhysicsGovernment First Grade College and PG CenterChintamaniIndia

Personalised recommendations