β-Chain Hydrogen-Bonding in 4-Hydroxycoumarins

  • Truc-Vi H. Duong
  • Todd S. Carroll
  • Daniel S. Bejan
  • Edward J. ValenteEmail author
Original Paper


In the solid state, some 3-substituted 4-hydroxycoumarins β-ketoester enols form infinite translational hydrogen-bonded β-chains with varying degrees of alignment between adjacent delocalized systems. Nine related structures have been studied. At the strongest, intermolecular associations are polar, purely translation neighbors interact essentially along a 717 pm crystallographic repeat with shortened 260 pm intermolecular O·OH-bond contacts. Four distinctive features characterize these structures: (1) moderately delocalized β-ketoester enol structures, (2) translational misalignment angles between oxygen donors and acceptors less than 10°, (3) buttressing intermolecular C–H·O contacts co-planar with and near the intermolecular O–H·O interactions, and (4) fully extended ketoester enol hydrogen-bond (ap-anti-anti) geometries. For non-polar β-chains in related coumarin systems, β-ketoester enol alignments are typically poorer, involve hydrogen-bonding between glide relatives, ap-syn-(anti) geometry, and the intermolecular O·OH-bond contacts are longer.

Graphic Abstract

Substituted 4-hydroxycoumarins related to phenprocoumon can form well-aligned polar translational β-chains between enolones showing resonance assisted Hydrogen-bonding and a 717 pm repeat along a crystallographic axis.


Hydrogen-bonding Ketoester enol Supramolecular Coumarin 4-Hydroxycoumarin β-Chains Phenprocoumon 



EJV thanks the National Science Foundation (MRI-0618148) for support of crystallographic equipment. Thanks also go to Dr. Verner Schomaker (deceased) of the University of Washington for his encouragement, acumen, persistence and pedagogy with difficult structures.

Compliance with Ethical Standards

Conflict of interest

All the authors declare no conflict of interest.


  1. 1.
    Steed JW, Turner DR, Wallace KJ (2007) Core concepts in supramolecular chemistry and nanochemistry. Wiley, ChichesterGoogle Scholar
  2. 2.
    Gilli G, Bellucci F, Ferretti V, Bertolasi V (1989) Evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of the β-diketone fragment. J Am Chem Soc 111:1023–1028CrossRefGoogle Scholar
  3. 3.
    Bertolasi V, Gilli P, Ferretti V, Gilli G (1996) Resonance-assisted O-H…O hydrogen bonding: its role in the crystalline self-recognition of β-diketone enols and its structural and IR characterization. Chem Eur J 2(8):925–934CrossRefGoogle Scholar
  4. 4.
    Sanz P, Mo O, Yanez M, Elguero J (2007) Resonance-assisted hydrogen bonds: a critical examination. structure and stability of the enols of β-diketones and β-enaminones. J Phys Chem 111:3585–3591CrossRefGoogle Scholar
  5. 5.
    Gora RW, Maj M, Grabowski SJ (2013) Resonance-assisted hydrogen bonds revisited Resonance stabilization vs. charge delocalization. Phys Chem Chem Phys 15:2514–2522PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Gilli P, Pretto L, Bertolasi V, Gilli G (2009) Predicting hydrogen-bond strengths from acid-base molecular properties the pKa slide rule: toward the solution of a long-lasting problem. Acc Chem Res 42(1):33–44PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Tadeusz M, Krygowski J, Zachara-Horeglad E (2009) Resonance-assisted hydrogen bonding in terms of substituent effect. Tetrahedron 65:2010–2014CrossRefGoogle Scholar
  8. 8.
    Beck JF, Mo Y (2007) How resonance assists hydrogen bonding interactions: an energy decomposition analysis. J Comput Chem 28:455–466PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Grabowski JS (2009) Covalent character of hydrogen bonds enhanced by π-electron delocalization. Croat Chem Acta 82:185–192Google Scholar
  10. 10.
    Gilli G Bertolasi, Feretti V, Gilli P (1993) Resonance assisted hydrogen bond. III. Formation of intermolecular hydrogen-bonded chains in crystals of β-diketones and its relevance to molecular association. Acta Crystallogr B49:564–576CrossRefGoogle Scholar
  11. 11.
    Trifonov L, Bieri JH, Prewo R, Dreiding AS, Rast DM, Hoesch L (1982) The constitution of veretinolide, a new derivative of tetronic acid, Produced by Verticillium Intertextum. Tetrahedron 38(3):397–403CrossRefGoogle Scholar
  12. 12.
    Katrusiak A (1993) Structure of 2-methyl-1,3-cyclohexandione crystals. J Crystallogr Spectrosc Res 23(5):367–372CrossRefGoogle Scholar
  13. 13.
    Gaultier J, Hauw C (1966) Structure del’hydroxy-4-coumarine. Eau d’Hydroation et Cohesion Cristalline. Acta Crystallogr 20:646–651CrossRefGoogle Scholar
  14. 14.
    Bravic G, Gaultier J, Hauw C (1971) Structure cristalline et moleculaire du marcoumar. C R Acad Sci Paris C272:1112–1114Google Scholar
  15. 15.
    Bravic G, Gaultier J, Geoffre S, Hauw C (1974) Structure crystalline d’une antivitamine K: 1’α-naphthyl-3-hydroxy-4-coumarine. C R Acad Sci Paris 278:601–603Google Scholar
  16. 16.
    Valente EJ, Trager WF, Lingafelter EC (1976) (–)–3–(1–Phenylpropyl)–4–hydroxycoumarin. Acta Crystallogr B32:277–279CrossRefGoogle Scholar
  17. 17.
    Manolov I, Maichle-Moessmer C (2007) Crystal structure of 4-hydroxy-3-[1-phenyl-2-(4-methoxybenzoyl)ethyl]-2H-1-benzopyran-2-one. Anal Sci 23:X79 (See CCDC 637813) Google Scholar
  18. 18.
    Bravic G, Gaultier J, Hauw C (1968) Structure crystalline et moleculaire du dicoumarol. C R Acad Sci Paris 267:1790–1795Google Scholar
  19. 19.
    Alcock NW, Hough E (1972) The crystals and molecular structure of 3,3-methylene(bis-6-bromo-4-hydroxycoumarin): unusual molecular interactions. Acta Crystallogr B28:1957–1960CrossRefGoogle Scholar
  20. 20.
    Valente EJ, Eggleston DS (1989) Structure of (phenyl)bis(4-hydroxybenzo-2H-pyran-2-one-3-yl)methane. Acta Crystallogr C45:785–787Google Scholar
  21. 21.
    Stancheva S, Maichle-Mössmerb C, Manolova I (2007) Synthesis, structure and acid-base behaviour of some 4-hydroxycoumarin derivatives. Zeitschrift fur Naturforschung 62:737–741CrossRefGoogle Scholar
  22. 22.
    Ravikumar N, Gopikrishna G, Solomon KA (2012) 3,3’-[(4-Nitrophenyl)methylene]-bis(4-hydroxy-2H-chromen-2-one). Acta Crystallogr E 68:o265CrossRefGoogle Scholar
  23. 23.
    Li M-K, Li J, Liu B-H, Zhou Y, Li X, Xue X-Y, Hou Z, Luo X-X (2013) Synthesis, crystal structures, and anti-drug-resistant Staphylococcus aureus activities of novel 4-hydroxycoumarin derivatives. Eur J Pharmacol 721:151–157PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Chang-Wei LV, Yao-Ping WU, Jian L, Xin-Gang J (2012) 3,3’-(4-Dimethylamino benzylidene)-bis-(4-hydroxycoumarin). Chin J Struct Chem 31:847–850Google Scholar
  25. 25.
    Manolol I, Ströebele M, Meyer H-J (2008) Crystal structure of 4-hydroxy-3-[(2-oxo-2H-chromen-3-yl)-(3,4,5-trimethoxyphenyl)methyl]chromen-2-one. Anal Sci 24:x135–x136Google Scholar
  26. 26.
    Manolov I, Morgenstern B, Hegetschweiler K (2012) Synthesis and structure of ethyl 2-[bis(4-hydroxy-2-oxo-2H-chromen-3-yl)methyl]benzoate. X-Ray Struct Anal Online 28:83–84CrossRefGoogle Scholar
  27. 27.
    Manolov I, Morgenstern B, Hegetschweiler K (2012) Synthesis and Structure of 4-Hydroxy-3-[(2-oxo-2H-chromen-3-yl)-3,4-dihydroxyphenyl)methyl]chromen-2-one ethanol solvate. X-Ray Struct Anal Online 28:87–88CrossRefGoogle Scholar
  28. 28.
    Manolov I, Maichle-Moessmer C (2013) Synthesis and crystal structure of 4-hydroxy-3-[(3E)-3-(hydroxyimino)-1-(4-nitrophenyl)butyl]-2H-chromen-2-one. Bulg Chem Commun 45(1):109–113Google Scholar
  29. 29.
    Asas M, Oo C-W, Osman H, Quah CK, Fun H-K (2010) 3-[(E)-3-(2,4-Dichloro phenyl)prop-2-enoyl]-4-hydroxy-2H-chromen-2-one. Acta Crystallogr 66E:o3022–o3023Google Scholar
  30. 30.
    Naveen S, Adlakha P, Upadhyay K, Shah A, Anandalwar SM, Prasad JS (2006) Crystal structure of 3-nitro-4-hydroxycoumarin. Anal Sci 22:x103–x104Google Scholar
  31. 31.
    Stefanou V, Matiadis D, Melagraki G, Afantitis A, Athanasellis G, Igglessi-Markopoulou O, McKee V, Markopoulos J (2011) Functionalized 4-hydroxycoumarins: novel synthesis, crystal structure and DFT calculations. Molecules 16:384–402PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Pohl LR, Haddock R, Garland WA, Trager WF (1975) Synthesis and thin-layer chromatographic, ultraviolet, and mass spectral properties of the anticoagulant phenprocoumon and its monohydroxylated derivatives. J Med Chem 18(5):513–519PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    West BD, Link KP (1965) The resolution and absolute configuration of marcumar. J Heterocycl Chem 2(1):93–94CrossRefGoogle Scholar
  34. 34.
    Kischel J, Mertins K, Michalik D, Zapf A, Bellera M (2007) A general and efficient iron-catalyzed benzylation of 1,3-dicarbonyl compounds. Adv Synth Catal 2007(349):865–870CrossRefGoogle Scholar
  35. 35.
    Theerthagiri P, Lalitha A (2010) Benzylation of β-dicarbonyl compounds and 4-hydroxycoumarin using TMSOTf catalyst: a simple, mild, and efficient method. Tetrahedron 51:5454–5458CrossRefGoogle Scholar
  36. 36.
    West BD, Preis S, Schroeder CH, Link KP (1961) Studies on 4-hydroxycoumarins. XVII. The resolution and absolute configuration of warfarin. J Am Chem Soc 83(12):2676–2679CrossRefGoogle Scholar
  37. 37.
    Liu Z-Q, Zhang Y, Zhao L, Li Z, Wang J, Li H, Wu L-M (2011) Iron-Ctalyzed stereospecific olefin synthesis by direct coupling of alcohols and alkenes with alcohols. Org Lett 13(9):2208–2211PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Appendino G, Cravotto G, Tagliapietra S, Ferraro S, Nano GM (1991) The chemistry of coumarin derivatives. Part 3. Synthesis of 3-alkyl-4-hydroxycoumarins by reductive fragmentation of 3,3’-alkylidine-4,4’-dihydroxybis[coumarins]. Helv Chim Acta 74:1451–1458CrossRefGoogle Scholar
  39. 39.
    Stahmann MA, Wolff I, Link KP (1943) Studies on 4-hydroxycoumarins. I. The synthesis of 4-hydroxycoumarins. J Am Chem Soc 65:2285–2287CrossRefGoogle Scholar
  40. 40.
    Clark RS, Reid JS (1995) The analytical calculation of absorption in multifaceted crystals. Acta Crystallogr A51:887–897CrossRefGoogle Scholar
  41. 41.
    Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122 (recent program release from 2018)Google Scholar
  42. 42.
    Mercury (2016) version 3.9, Cambridge Crystallographic Data CenterGoogle Scholar
  43. 43.
    Steiner T (2002) The hydrogen bond in the solid state. Angew Chem Int Ed 41:48–76CrossRefGoogle Scholar
  44. 44.
    Valente EJ, Eggleston DS, Schomaker V (1986) Structures of Five trans–2–hydroxy and methoxy–2–methyl–3,4–dihydro–4-aryl–2H,5H–pyrano [3,2–c] [1]benzopyran–5–ones. Acta Crystallogr A C42:1809–1813Google Scholar
  45. 45.
    Etter MC, MacDonald JC, Bernstein J (1990) Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallogr A B46:256–262CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of PortlandPortlandUSA
  2. 2.Science ProgramsWashington State UniversityVancouverUSA

Personalised recommendations