Journal of Chemical Crystallography

, Volume 49, Issue 3, pp 186–192 | Cite as

Crystal Structure and Preferential Site Occupancy in Cs6Mn(H2O)2(VO3)8 and Cs5KMn(H2O)2(VO3)8

  • Tiffany M. Smith Pellizzeri
  • Colin D. McMillen
  • Kimberly Ivey
  • Joseph W. KolisEmail author
Original Paper


Two new structurally related cesium manganese vanadates have been synthesized by a high-temperature (580 °C) hydrothermal synthetic method utilizing halide brine mineralizers. Both structures Cs6Mn(H2O)2(VO3)8 (I) and Cs5KMn(H2O)2(VO3)8 (II) are isostructural crystallizing in the tetragonal space group P4/mnc. The first structure, Cs6Mn(H2O)2(VO3)8 (I) has unit cell dimensions of a = 13.6830(4) Å, c = 8.6476(3) Å and the second structure, Cs5KMn(H2O)2(VO3)8 (II), has unit cell dimensions of a = 13.5015(4) Å, c = 8.5372(3) Å. The structures are built from a manganese vanadate chain, which consists of [Mn(H2O)2O4] units that are coordinated to one another by a unique sinusoidal vanadate chain, (VO3)n. Both structures have well-ordered alkali metal atoms, with the potassium atoms of II exhibiting preferential site occupancy. Both compounds were characterized by single crystal X-ray diffraction and infrared spectroscopy, to identify the characteristic O–H and V–O modes.

Graphical Abstract

Crystals of Cs6Mn(H2O)2(VO3)8 and Cs5KMn(H2O)2(VO3)8 were synthesized from hydrothermal brines and their structures determined by single crystal X-ray diffraction, revealing preferential, ordered site substitution of the alkali metals.


Hydrothermal synthesis Metal vanadates Brine mineralizers Transition metal 



We are indebted to the National Science Foundation NSF-DMR-1808371 for financial support of this work.


  1. 1.
    Livage J (1998) Synthesis of polyoxovanadates via “chimie douce”. Coord Chem Rev 178–180:999–1018. CrossRefGoogle Scholar
  2. 2.
    Chirayil T, Zavalij PY, Whittingham MS (1998) Hydrothermal synthesis of vanadium oxides. Chem Mater 10:2629–2640. CrossRefGoogle Scholar
  3. 3.
    Schindler M, Hawthorne FC, Baur WH (2000) A crystal-chemical approach to the composition and occurrence of vanadium minerals. Can Miner 38:1443–1456. CrossRefGoogle Scholar
  4. 4.
    McMillen CD, Kolis JW (2016) Hydrothermal synthesis as a route to mineralogically-inspired structures. Dalton Trans 45:2772–2784. CrossRefGoogle Scholar
  5. 5.
    Liebau F (1985) Structural chemistry of silicates—structure, bonding, and classification. Springer Science & Business Media, New YorkGoogle Scholar
  6. 6.
    Möller A, Amuneke NE, Daniel P, Lorenz B, de la Cruz CR, Gooch M, Chu PCW (2012) A Ag2M[VO4]2 (A = Ba, Sr; M = Co, Ni): a series of ferromagnetic insulators. Phys Rev B 85:214422. CrossRefGoogle Scholar
  7. 7.
    Lawes G, Harris AB, Kimura T, Rogado N, Cava RJ, Aharony A, Etin-Wohlman O, Yildirim T, Kenzelmann M, Broholm C, Ramirez AP (2005) Magnetically driven ferroelectric order in Ni3V2O8. Phys Rev Lett 95:087205. CrossRefGoogle Scholar
  8. 8.
    Bellido N, Martin C, Simon C, Maignan A (2007) Coupled negative magnetocapacitance and magnetic susceptibility in a Kagomé staircase-like compound Co3V2O8. J Phys 19:056001. Google Scholar
  9. 9.
    Smith Pellizzeri TM, McMillen CD, Wen Y, Chumanov G, Kolis JW (2017) Three unique barium manganese vanadates from high-temperature hydrothermal brines. Inorg Chem 56:4206–4216. CrossRefGoogle Scholar
  10. 10.
    Clemens O, Rohrer J, Nénert G (2016) Magnetic structures of the low temperature phase of Mn3(VO4)2—towards understanding magnetic ordering between adjacent Kagomé layers. Dalton Trans 45:156–171. CrossRefGoogle Scholar
  11. 11.
    Sanjeewa LD, McGuire MA, McMillen CD, Willett D, Chumanov G, Kolis JW (2016) Honeycomb-like S = 5/2 spin-lattices in manganese(II) vanadates. Inorg Chem 55:9240–9249. CrossRefGoogle Scholar
  12. 12.
    Sanjeewa LD, McMillen CD, McGuire MA, Kolis JW (2016) Manganese vanadate chemistry in hydrothermal BaF2 brines: Ba3Mn2(V2O7)2F2 and Ba7Mn8O2(VO4)2F23. Inorg Chem 55:12512–12515. CrossRefGoogle Scholar
  13. 13.
    Erdei S (1993) Growth of oxygen deficiency-free YVO4 single crystal by top-seeded solution growth technique. J Cryst Growth 134:1–13. CrossRefGoogle Scholar
  14. 14.
    Erdei S, Johnson GG, Ainger FW (1994) Growth studies of YVO4 crystals (II). Changes in Y–V–O-stoichiometry. Cryst Res Technol 29:815–828. CrossRefGoogle Scholar
  15. 15.
    Wang N, He Z, Cui M, Guo W, Zhang S, Yang M (2015) Syntheses and Characterization of a Family of Vanadate Compounds Ba3M(V2O7)2 (M = Co, Mn, Mg, or Zn) with an Edge-Shared [M2O10] Dimer Structure. Cryst Growth Des 15:1619–1624. CrossRefGoogle Scholar
  16. 16.
    Sanjeewa LD, McGuire MA, Smith Pellizzeri TM, McMillen CD, Garlea VO, Willett D, Chumanov G, Kolis JW (2016) Synthesis and characterization of new fluoride-containing manganese vanadates A2Mn2V2O7F2 (A = Rb, Cs) and Mn2VO4F. J Solid State Chem 241:30–37. CrossRefGoogle Scholar
  17. 17.
    Smith Pellizzeri TM, McMillen CD, Pellizzeri S, Wen Y, Getman RB, Chumanov G, Kolis JW (2017) Strontium manganese vanadates from hydrothermal brines: synthesis and structure of Sr2Mn2(V3O10)(VO4), Sr3Mn(V2O7)2, and Sr2Mn(VO4)2(OH). J Solid State Chem 255:225–233. CrossRefGoogle Scholar
  18. 18.
    Sanjeewa LD, McGuire MA, Garlea VO, Hu L, Chumanov G, McMillen CD, Kolis JW (2015) Hydrothermal synthesis and characterization of novel brackebuschite-type transition metal vanadates: Ba2M(VO4)2(OH), M = V3+, Mn3+, and Fe3+, with interesting Jahn-Teller and spin-liquid behavior. Inorg Chem 54:7014–7020. CrossRefGoogle Scholar
  19. 19.
    Pellizzeri TMS, McGuire MA, McMillen CD, Wen Y, Chumanov G, Kolis JW (2018) Two halide-containing cesium manganese vanadates: synthesis, characterization, and magnetic properties. Dalton Trans 47:2619–2627. CrossRefGoogle Scholar
  20. 20.
    Hawthorne FC, Calvo C (1977) The crystal chemistry of the M+VO3 (M+ = Li, Na, K, NH4, Tl, Rb, and Cs) pyroxenes. J Solid State Chem 22:157–170. CrossRefGoogle Scholar
  21. 21.
    Boucher B, Buhl R, Perrin M (1971) Proprietes et structure magnetique de Mn3O4. J Phys Chem Solids 32:2429–2437. CrossRefGoogle Scholar
  22. 22.
    Galy J, Carpy A (1975) Structure cristalline de K2V3O8 ou K2(VO)[V2O7]. Acta Crystallogr B 31:1794–1795. CrossRefGoogle Scholar
  23. 23.
    Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8. CrossRefGoogle Scholar
  24. 24.
    Queen WL, West JP, Hwu S-J, VanDerveer DG, Zarzyczny MC, Pavlick RA (2008) The versatile chemistry and noncentrosymmetric crystal structures of salt-inclusion vanadate hybrids. Angew Chem Int Ed 47:3791–3794. CrossRefGoogle Scholar
  25. 25.
    Onodera S, Ikegami Y (1980) Infrared and Raman spectra of ammonium, potassium, rubidium, and cesium metavanadates. Inorg Chem 19:615–618. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tiffany M. Smith Pellizzeri
    • 1
  • Colin D. McMillen
    • 1
  • Kimberly Ivey
    • 2
  • Joseph W. Kolis
    • 1
    Email author
  1. 1.Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COMSET)Clemson UniversityClemsonUSA
  2. 2.Department of Materials Science and EngineeringClemson UniversityClemsonUSA

Personalised recommendations