Advertisement

Synthesis, Spectroscopic Studies and Supramolecular Architecture in a Dinuclear Uranyl Complex, 2-Aminopyridinium [bis(µ2-hydroxo)-tetrakis(nitrato–κ2–O,O′)-tetraoxo-diuranium(VI)] Monohydrate

  • Sundaramoorthy Gomathi
  • Jeyaraman Selvaraj Nirmalram
  • Packianathan Thomas MuthiahEmail author
Original Paper

Abstract

The titled dinuclear uranyl complex, U2O18N4H2·2(C5H7N2) 2(H2O) was crystallised in Monoclinic (C2/c) space group with the cell parameters a = 18.0728(3) b = 10.6896(3) c = 13.9068(3)Å, α = γ = 90.00° β = 103.988(2)°. In the structure, the U(VI) atom is eight coordinated with slightly distorted hexagonal bipyramidal geometry around the U(VI) ion. Two oxide ligands in the axial positions and four oxygen atoms from two bidentate nitrate ligands and two oxygen atoms from two hydroxy groups in the equatorial plane form the coordination sphere around the uranium atom. The two hydroxy groups act as bridging ligands between the uranyl ions generating a dinuclear unit having an inversion centre. The coordinated and non coordinated nitrate O atoms, axial uranyl O atoms, bridged hydroxy O atom, the non coordinated 2-aminopyridinium ion and the lattice water molecule play a vital role in assembling the three-dimensional structure via an extensive network of intermolecular O–H···O, N–H···O and C–H···O hydrogen bonds and aromatic π–π stacking interaction.

Graphical Abstract

The U(VI) atom is eight coordinated with slightly distorted hexagonal bipyramidal geometry. The three-dimensional structure is built through extensive network of intermolecular O–H···O, N–H···O, C–H···O hydrogen bonds and aromatic π–π stacking interaction.

Keywords

Dinuclear uranyl complex Crystal structure Non-covalent interactions Supramolecular architecture Absorption studies 

Notes

Acknowledgements

SG thanks the University Grants Commission- Basic Scientific Research (UGC-BSR), India, for the award of RFSMS. The authors also thank the Department of Science and Technology (DST)-India (F.I.S.T programme) for the use of Bruker SMART APEX II diffractometer and Bruker Advance 400 (400 MHz) NMR spectrometer at the School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamilnadu, India. PTM thanks UGC, New Delhi, for a UGC Emeritus fellowship.

Supplementary material

10870_2019_777_MOESM1_ESM.doc (8.5 mb)
Supplementary material 1 (DOC 8709 KB)

References

  1. 1.
    Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. John Wiley & Sons Inc, New YorkGoogle Scholar
  2. 2.
    Andrews MB, Cahill AL (2013) Chem Rev 113:1121CrossRefGoogle Scholar
  3. 3.
    Plaza MC, Null EL, Lu Y (2013) Nucleic Acids Res 41(20):9361CrossRefGoogle Scholar
  4. 4.
    Signorni O, Dockal ER (1996) Polyhedron 15(2):245CrossRefGoogle Scholar
  5. 5.
    Howatson J, Grew DM, Morosin B (1975) J Inorg Nucl Chem 37:1933CrossRefGoogle Scholar
  6. 6.
    Turpeinen U, Hämäläinen R, Mutikainen I, Orama O (1996) Acta Cryst C 52:1169CrossRefGoogle Scholar
  7. 7.
    Hämäläinen R, Turpeinen U, Mutikainen I (1996) Acta Cryst C 52:16CrossRefGoogle Scholar
  8. 8.
    Hazra S, Sasmal S, Nayak M, Sparkes HA, Howard JAK, Mohanta S (2010) CrystEngComm 12:470CrossRefGoogle Scholar
  9. 9.
    Sasikumar P, Muthiah PT (2010) Acta Cryst C 66:m48CrossRefGoogle Scholar
  10. 10.
    Jenniefer SJ, Muthiah PT (2011) Acta Cryst C 67: m69CrossRefGoogle Scholar
  11. 11.
    Jenniefer SJ, Muthiah PT (2014) Inorg Chim Acta 416:69CrossRefGoogle Scholar
  12. 12.
    Bailar JC, Emeleus HJ, Nyholm SR, Dickenson AFT (1973) Comprehensive inorganic chemistry, vol 5. Pergamon, OxfordGoogle Scholar
  13. 13.
    Bruker (2008) APEX2, SAINT and SADABS. Bruker AXS Inc., MadisonGoogle Scholar
  14. 14.
    Sheldrick GM (2008) Acta Cryst A 64:112CrossRefGoogle Scholar
  15. 15.
    Spek AL (2009) Acta Cryst D 65:148CrossRefGoogle Scholar
  16. 16.
    Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) J Appl Cryst 41:466CrossRefGoogle Scholar
  17. 17.
    Cason CJ (2004) POV-RAY for Windows. Persistence of Vision, Raytracer Pty. Ltd, Victoria. URL: http://www.povray.org
  18. 18.
    Charushnikova IA, Auwer CD (2004) Russ J Coord Chem 30(7):511CrossRefGoogle Scholar
  19. 19.
    Xie ZY (2007) Acta Cryst E 63:o2192CrossRefGoogle Scholar
  20. 20.
    Etter MC (1990) Acc Chem Res 23:120CrossRefGoogle Scholar
  21. 21.
    Allen FH (2002) Acta Cryst B 58:380CrossRefGoogle Scholar
  22. 22.
    Viossat B, Nguyen-Huy D, Soye C (1983) Acta Cryst C 39:573CrossRefGoogle Scholar
  23. 23.
    Alcock NW, Flanders DJ (1987) Acta Cryst C 43:1267CrossRefGoogle Scholar
  24. 24.
    Evans DJ, Junk PC, Smith MK (2002) New J Chem 26:1043CrossRefGoogle Scholar
  25. 25.
    Fischer A, Palladino G (2005) Acta Cryst E 61:m1542CrossRefGoogle Scholar
  26. 26.
    Spencer EC, Kalyanasundari B, Mariyatra MB, Howard JAK, Panchanatheswaran K (2006) Inorg Chim Acta 359:35CrossRefGoogle Scholar
  27. 27.
    Cocalia V, Smiglak M, Kelley SP, Shamshina JL, Gurau G, Rogers RD (2010) Eur J Inorg Chem 18 2760CrossRefGoogle Scholar
  28. 28.
    Thuery P, Masci B (2002) Acta Cryst C 58:m556CrossRefGoogle Scholar
  29. 29.
    Thuery P (2011) Cryst Growth Des 11:3282CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sundaramoorthy Gomathi
    • 1
  • Jeyaraman Selvaraj Nirmalram
    • 2
  • Packianathan Thomas Muthiah
    • 3
    Email author
  1. 1.Department of ChemistryPeriyar Maniammai Institute of Science and TechnologyThanjavurIndia
  2. 2.Department of ChemistryPRIST UniversityThanjavurIndia
  3. 3.School of ChemistryBharathidasan UniversityTiruchirappalliIndia

Personalised recommendations