Advertisement

Synthesis, Crystal Structure and Photophysical Properties of Two Reduced Schiff Bases Derived from 5-Aminoisophthalic Acid

  • Lai-Jun ZhangEmail author
  • Li Qi
  • Xiu-Ying Chen
  • Feng Liu
  • Li-Juan Liu
  • Wen-Li Ding
  • De-Lin Li
  • Guo-Cai Yuan
  • Ji-Zao Tong
  • Fa-Yun Chen
  • Hai-Jin Huang
  • Yong-Hua Wang
Original Paper

Abstract

Two reduced Schiff bases, namely 5-[(2-hydroxybenzyl)amino]isophthalic acid (1) and 5-[(pyridin-4-ylmethyl)amino]isophthalic acid (2), were synthesized in two-step method using 5-aminoisophthalic acid as the starting material, and were characterized by single-crystal X-ray diffraction, elemental analysis, infrared, 1H NMR, mass, absorption and fluorescence spectra. Both 1 and 2 crystallize in monoclinic system with space groups P21/c for 1 and P21/n for 2. Photophysical properties of both 1 and 2 are significantly different from those of raw material 5-aminoisophthalic acid due to stronger p → π conjugation when one amino hydrogen atom in 5-aminoisophthalic acid is substituted with electron-donor group. 1 displays a very strong narrow-band blue fluorescence with the maximum peak at 439 nm, a high quantum efficiency up to 64%, and a narrow full width at half maximum of 35 nm, while 2 has a broader and weaker fluorescence with the peak at 418 nm and FHWM of about 50 nm.

Graphical Abstract

Two reduced Schiff bases with blue fluorescence were synthesized from 5-aminoisophthalic acid in two-step method including formation of the corresponding Schiff bases and further reduction by NaBH4.

Keywords

Reduced Schiff base 5-[(2-Hydroxybenzyl)amino]isophthalic acid 5-[(Pyridin-4-ylmethyl)amino]isophthalic acid 5-Aminoisophthalic acid Crystal structure Photophysical property 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21561028), Science and Technology Program of Department of Education of Jiangxi Province (GJJ151064), and the National Natural Science Foundation of Jiangxi Province (2016BAB203071).

Supplementary material

10870_2018_761_MOESM1_ESM.docx (619 kb)
Supplementary material 1 (DOCX 618 KB)
10870_2018_761_MOESM2_ESM.pdf (108 kb)
Supplementary material 2 (PDF 108 KB)
10870_2018_761_MOESM3_ESM.pdf (104 kb)
Supplementary material 3 (PDF 104 KB)

References

  1. 1.
    Jimenez-Perez VM, Garcia-Lopez MC, Munoz-Flores BM, Chan-Navarro R, Berrones-Reyes JC, Dias HVR, Moggio I, Arias E, Serrano-Mireles JA, Chavez-Reyes A (2015) J Mater Chem B 3:5731–5745CrossRefGoogle Scholar
  2. 2.
    Saha UC, Dhara K, Chattopadhyay B, Mandal SK, Mondal S, Sen S, Mukherjee M, van Smaalen S, Chattopadhyay P (2011) Org Lett 13:4510–4513CrossRefGoogle Scholar
  3. 3.
    Zhang SH, Wang JM, Zhang HY, Fan YP, Xiao Y (2016) Dalton Trans 46:410–419CrossRefGoogle Scholar
  4. 4.
    Katsuki T (2004) Chem Soc Rev 33:437–444CrossRefGoogle Scholar
  5. 5.
    Manan MAFA, Tahir MIM, Crouse KA, How FN-F, Watkin DJ (2012) J Chem Crystallogr 42:173–179CrossRefGoogle Scholar
  6. 6.
    Crowell TI, Bell CE, O’Brien DH (1964) J Am Chem Soc 86:4973–4976CrossRefGoogle Scholar
  7. 7.
    Kaur M, Jasinski JP, Anderson BJ, Yathirajan HS, Byrappa K (2015) J Chem Crystallogr 45:193–201CrossRefGoogle Scholar
  8. 8.
    Wang J, Feng C, Ge CM, Zhang S, Hai H (2016) J Cluster Sci 27:2001–2011CrossRefGoogle Scholar
  9. 9.
    Arici M (2017) Cryst Growth Des 17:5499–5505CrossRefGoogle Scholar
  10. 10.
    Kourtellaris A, Moushi EE, Spanopoulos I, Tampaxis C, Charalambopoulou G, Steriotis TA, Papaefstathiou GS, Trikalitis PN, Tasiopoulos AJ (2016) Inorg Chem Front 3:1527–1535CrossRefGoogle Scholar
  11. 11.
    Karmakar A, Martins LMDRS, Hazra S, Guedes da Silva MFC, Pombeiro AJL (2016) Cryst Growth Des 16:1837–1849CrossRefGoogle Scholar
  12. 12.
    Wang Y, Zhang L-J, Zhang R, Jin Y, Wang Y, Xing Y-H, Bai F-Y, Sun L-X (2017) Cryst Growth Des 17:6531–6540CrossRefGoogle Scholar
  13. 13.
    Zhao N, Sun F, Li P, Mu X, Zhu G (2017) Inorg Chem 56:6938–6942CrossRefGoogle Scholar
  14. 14.
    Zhang LJ, Li YH, Chen FY, Wu HY, Chen X (2013) Chin J Struct Chem 32:550–556Google Scholar
  15. 15.
    Das MC, Bharadwaj PK (2009) J Am Chem Soc 131:10942–10949CrossRefGoogle Scholar
  16. 16.
    Li S-Y, Sun Z-B, Zhao C-H (2017) Inorg Chem 56:8705–8717CrossRefGoogle Scholar
  17. 17.
    Romm IP, Guryanova EN, Kocheshkov KA (1969) Tetrahedron 25:2455–2468CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lai-Jun Zhang
    • 1
    Email author return OK on get
  • Li Qi
    • 1
  • Xiu-Ying Chen
    • 1
  • Feng Liu
    • 1
  • Li-Juan Liu
    • 1
  • Wen-Li Ding
    • 1
  • De-Lin Li
    • 1
  • Guo-Cai Yuan
    • 1
  • Ji-Zao Tong
    • 1
  • Fa-Yun Chen
    • 1
  • Hai-Jin Huang
    • 1
  • Yong-Hua Wang
    • 1
  1. 1.School of Chemistry and Environmental ScienceShangrao Normal UniversityShangraoChina

Personalised recommendations