Advertisement

Synthesis, Crystal Structure, Anion Sensing Applications and DFT Studies of (E)-2-[(3,5-Bis(trifluoromethyl)phenylimino)methyl]-4-chlorophenol

  • Hüseyin Ünver
  • Celal Tuğrul ZeyrekEmail author
  • Bahadir Boyacioglu
  • Mustafa Yıldız
  • Neslihan Demir
  • Ayhan Elmali
Original Paper

Abstract

We report the synthesis and characterization, colorimetric anion sensors properties, density functional theory (DFT) calculation studies of a Schiff base (E)-2-[(3,5-bis(trifluoromethyl)phenylimino)methyl]-4-chlorophenol. The molecular structure of the title compound was experimentally determined using X-ray single-crystal data and was compared to the structure predicted by theoretical calculations using DFT. The experimental and calculated data (using DFT) of the title compound have been compared. To investigate the tautomeric stability, some properties such as total energy, HOMO and LUMO energies, the chemical hardness (η), the ionization potential, the electron affinity, the absolute electronegativity (χ), the absolute softness (σ) of the compound were obtained at B3LYP/6–311++G(d,p) level in the gas phase and solvent phase. The calculated results showed that the enol-imine form of the compound was more favorite than keto-amine form. The colorimetric response of the Schiff base receptors in DMSO was investigated.

Graphical Abstract

Synthesis and characterization, colorimetric anion sensors properties and density functional theory (DFT) calculation studies of a Schiff base (E)-2-[(3,5-bis(trifluoromethyl)phenylimino)methyl]-4-chlorophenol have been reported in the study.

Keywords

X-ray Crystal structure Density functional theory Anion sensors 

Notes

Acknowledgements

The authors are grateful to the Scientific and Technical Research Council of Turkey (TÜBİTAK) for the financial support of this work, grant number TÜBİTAK 115F253.

Supplementary material

10870_2018_758_MOESM1_ESM.tif (663 kb)
Figure S1. Comparison of the experimental and calculated FT-IR spectra of the investigated compounds: (a) Observed spectra; (b) Theoretical spectra at B3LYP/6-311++G(d,p) level. (TIF 663 KB)
10870_2018_758_MOESM2_ESM.tif (494 kb)
Figure S2. Correlation graphics of unscaled (calculated) and experimental frequencies of the title compound. (TIF 494 KB)
10870_2018_758_MOESM3_ESM.tif (492 kb)
Figure S3. The energy difference between the gas phase and solvent media and dipole moment for different solvent media. (TIF 492 KB)
10870_2018_758_MOESM4_ESM.tif (953 kb)
Figure S4. Molecular electrostatic potential (MEP) map calculated at B3LYP/6-311++G(d,p) level. (TIF 952 KB)
10870_2018_758_MOESM5_ESM.tif (760 kb)
Figure S5. UV-visible spectrum of the compound in DMSO solvent. (TIF 759 KB)
10870_2018_758_MOESM6_ESM.tif (683 kb)
Figure S6. Molecular orbital surfaces and energy levels for the HOMO, HOMO-1, LUMO, and LUMO+1 of the title compound computed at B3LYP/6-311++G(d,p) level (TIF 683 KB)
10870_2018_758_MOESM7_ESM.docx (24 kb)
Supplementary material 7 (DOCX 24 KB)
10870_2018_758_MOESM8_ESM.docx (29 kb)
Supplementary material 8 (DOCX 28 KB)
10870_2018_758_MOESM9_ESM.docx (17 kb)
Supplementary material 9 (DOCX 16 KB)
10870_2018_758_MOESM10_ESM.docx (42 kb)
Supplementary material 10 (DOCX 42 KB)
10870_2018_758_MOESM11_ESM.docx (15 kb)
Supplementary material 11 (DOCX 14 KB)

References

  1. 1.
    Ghasemi O, Danaee I, Rashed GR, RashvandAvei M, Maddahy MH (2013) J Cent South Univ 20(2):301–311Google Scholar
  2. 2.
    Drozdzak R, Allaert B, Ledoux N, Dragutan I, Dragutan V, Verpoort F (2005) Coord Chem Rev 249(24):3055–3074Google Scholar
  3. 3.
    Yang CJ, Jenekhe SA (1995) Macromolecules 28(4):1180–1196Google Scholar
  4. 4.
    Destri S, Khotina IA, Porzio W (1998) Macromolecules 31(4):1079–1086Google Scholar
  5. 5.
    Zeyrek CT, Elmali A, Elerman Y (2005) Z Naturforsch B 60(5):520–526Google Scholar
  6. 6.
    Larkin DR (1990) J Org Chem 55(5):1563–1568Google Scholar
  7. 7.
    Vanco J, Svajlenova O, Racanska E, Muselik J, Valentova J (2004) J Trace Elem Med Biol 18(2):155–161PubMedGoogle Scholar
  8. 8.
    Taggi AE, Hafez AM, Wack H, Young B, Ferraris D, Lectka T (2002) J Am Chem Soc 124(23):6626–6635PubMedGoogle Scholar
  9. 9.
    Ramnauth R, Al-Juaid S, Motevalli M, Parkin BC, Sullivan AC (2004) Inorg Chem 43(13):4072–4079PubMedGoogle Scholar
  10. 10.
    Raman N, Thangaraja C (2005) Pol J Chem 79(7):1123–1134Google Scholar
  11. 11.
    Yang DL, Fokas D, Li JZ, Yu LB, Baldino CM (2005) Synthesis 2005:47–56Google Scholar
  12. 12.
    Zhou Y, Zhang JF, Yoon J (2014) Chem Rev 114(10):5511–5571PubMedGoogle Scholar
  13. 13.
    Hu BB, Lu P, Wang YG (2013) New J Chem 37(6):1645–1653Google Scholar
  14. 14.
    Mahanta SP, Kumar BS, Baskaran S, Sivasankar C, Pandet PK (2012) Org Lett 14(2):548–551PubMedGoogle Scholar
  15. 15.
    Dalapati S, Jana S, Guchhait N (2014) Spectrochim Acta A 129:499–508Google Scholar
  16. 16.
    Kumar D, Thomas KRJ (2014) RSC Adv 4(99):56466–56474Google Scholar
  17. 17.
    Li YP, Lin H, Cai ZS, Lin HK (2011) Mini-Rev Org Chem 8(1):25–30Google Scholar
  18. 18.
    Sharma D, Mistry AR, Bera RK, Sahoo SK (2013) Supramol Chem 25(4):212–220Google Scholar
  19. 19.
    Guha S, Saha S (2010) J Am Chem Soc 132(50):17674–17677PubMedGoogle Scholar
  20. 20.
    Hadjoudis E, Vittorakis M, Moustakalimavridis I (1987) Tetrahedron 43(7):1345–1360Google Scholar
  21. 21.
    Xu XX, You XZ, Sun ZF (1994) Acta Crystallogr C 50:1169–1171Google Scholar
  22. 22.
    Bouas-Laurent HDAH (1990) Photochromism: molecules and systems. Elsevier, AmsterdamGoogle Scholar
  23. 23.
    Schaumburg K, Goulle C, Roth S, Byrne H, Hagen S, Poplawsky J, Brufeldt K, Beechgard K, Pjornholm T, Fredericksen P, Jörgensen M, Lerstrup K, Sommer-Larsen P, Goscinsky O (1999) Nanostructure based molecular materials. Wiley, WeinheimGoogle Scholar
  24. 24.
    Yıldız M, Unver H, Erdener D, Ocak N, Erdonmez A, Durlu TN (2006) Cryst Res Technol 41(6):600–606Google Scholar
  25. 25.
    Unver H, Durlu TN (2003) J Mol Struct 655(3):369–374Google Scholar
  26. 26.
    Elmali A, Elerman Y, Zeyrek CT (1998) J Mol Struct 443(1–3):123–130Google Scholar
  27. 27.
    Elmali A, Kabak M, Kavlakoglu E, Elerman Y, Durlu TN (1999) J Mol Struct 510(1–3):207–214Google Scholar
  28. 28.
    Unver H, Kabak M, Zengin DM, Durlu TN (2001) J Chem Crystallogr 31(4):203–209Google Scholar
  29. 29.
    Gavranic M, Kaitner B, Mestrovic E (1996) J Chem Crystallogr 26(1):23–28Google Scholar
  30. 30.
    Blagus A, Cincic D, Friscic T, Kaitner B, Stilinovic V (2010) Maced J Chem Chem Eng 29(2):117–138Google Scholar
  31. 31.
    Yıldız M, Kılıç Z, Hökelek T (1998) J Mol Struct 441(1):1–10Google Scholar
  32. 32.
    Unver H, Yıldız M, Zengin DM, Ozbey S, Kendi E (2001) J Chem Crystallogr 31(4):211–216Google Scholar
  33. 33.
    Unver H, Yıldız M (2010) Spectrosc Lett 43(2):114–121Google Scholar
  34. 34.
    Koll A, Rospenk M, Jagodzinska E, Dziembowska T (2000) J Mol Struct 552:193–204Google Scholar
  35. 35.
    Razakantoanina V, Phung NKP, Jaureguiberry G (2000) Parasitol Res 86(8):665–668PubMedGoogle Scholar
  36. 36.
    Swaminathan J, Ramalingam M, Sethuraman V, Sundaraganesan N, Sebastian S, Kurt M (2010) Spectrochim Acta A 75(1):183–190Google Scholar
  37. 37.
    Sun YX, Hao QL, Yu ZX, Wei WX, Lu LD, Wang X (2009) Mol Phys 107(3):223–235Google Scholar
  38. 38.
    Yıldız M, Karpuz Ö, Zeyrek CT, Boyacıoğlu B, Dal H, Demir N, Yıldırım N, Ünver H (2015) J Mol Struct 1094:148–160Google Scholar
  39. 39.
    Barare B, Yıldız M, Alpaslan G, Dilek N, Ünver H, Tadesse S, Aslan K (2015) Sens Actuators B 215:52–61Google Scholar
  40. 40.
    Unver H, Yıldız M, Kiraz A, Iskeleli NO, Erdonmez A, Dulger B, Durlu TN (2006) J Chem Crystallogr 36(3):229–237Google Scholar
  41. 41.
    Cie S (2002) X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe&Cie, DarmstadtGoogle Scholar
  42. 42.
    Sheldrick GM (2008) Acta Crystallogr A A64:112–122Google Scholar
  43. 43.
    Sheldrick GM (2015) Acta Crystallogr C71(1):3–8Google Scholar
  44. 44.
    Farrugia LJ (1997) J Appl Crystallogr 30:565–565Google Scholar
  45. 45.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö. Foresman, JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Inc., WallingfordGoogle Scholar
  46. 46.
    Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem, Inc., Shawnee MissionGoogle Scholar
  47. 47.
    Charlotte FF (1987) Comput Phys Commun 43(3):355–365Google Scholar
  48. 48.
    Petersson GA, Bennett A, Tensfeldt TG, Allaham MA, Shirley WA, Mantzaris J (1988) J Chem Phys 89(4):2193–2218Google Scholar
  49. 49.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PV (1983) J Comput Chem 4(3):294–301Google Scholar
  50. 50.
    Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111(45):11683–11700PubMedGoogle Scholar
  51. 51.
    Ditchfield R (1972) J Chem Phys 56:5688Google Scholar
  52. 52.
    Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260Google Scholar
  53. 53.
    Cancès E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041Google Scholar
  54. 54.
    Erich R, Gross EKU (1984) Phys Rev Lett 52(12):997–1000Google Scholar
  55. 55.
    Zeyrek CT, Dilek N, Yıldız M, Unver H (2014) Mol Phys 112(19):2557–2574Google Scholar
  56. 56.
    Dabbagh HA, Teimouri A, Chermahini AN, Shahraki M (2008) Spectrochim Acta A 69(2):449–459Google Scholar
  57. 57.
    Teimouri A, Chermahini AN, Taban K, Dabbagh HA (2009) Spectrochim Acta A 72(2):369–377Google Scholar
  58. 58.
    Silverstein RM, Webster FX (2003) Spectroscopic identification of organic compound, 6th edn. Willey, New YorkGoogle Scholar
  59. 59.
    Yildiz M, Kilic Z, Hokelek T (1998) J Mol Struct 441:1–10Google Scholar
  60. 60.
    Nazir H, Yildiz M, Yilmaz H, Tahir MN, Ulku D (2000) J Mol Struct 52:241–250Google Scholar
  61. 61.
    Yeap GY, Ha ST, Ishizawa N, Suda K, Boey PL, Mahmood WAK (2003) J Mol Struct 658:87–99Google Scholar
  62. 62.
    Zeyrek CT, Kocak SB, Unver H, Pektas S, Basterzi NS, Celik O (2015) J Mol Struct 1100:570–581Google Scholar
  63. 63.
    Yildiz M (2004) Spectrosc Lett 37(4):367–381Google Scholar
  64. 64.
    Noh JY, Hwang IH, Kim H, Song EJ, Kim KB, Kim C (2013) B Korean Chem Soc 34(7):1985–1989Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hüseyin Ünver
    • 1
  • Celal Tuğrul Zeyrek
    • 2
    Email author
  • Bahadir Boyacioglu
    • 3
  • Mustafa Yıldız
    • 4
    • 5
  • Neslihan Demir
    • 6
  • Ayhan Elmali
    • 7
  1. 1.Department of Physics, Faculty of SciencesAnkara UniversityBeşevler-AnkaraTurkey
  2. 2.Ankara Nuclear Research and Training CenterTurkish Atomic Energy AuthorityBeşevler-AnkaraTurkey
  3. 3.Vocational School of Health ServicesAnkara UniversityKeçiörenTurkey
  4. 4.Department of Chemistry, Faculty of Sciences and ArtsÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey
  5. 5.Nanoscience and Technology Research and Application Center (NANORAC)Çanakkale Onsekiz Mart UniversityÇanakkaleTurkey
  6. 6.Department of Biology, Faculty of Arts and SciencesÇanakkale Onsekiz Mart UniversityÇanakkaleTurkey
  7. 7.Department of Physics Engineering, Faculty of EngineeringAnkara UniversityBeşevlerTurkey

Personalised recommendations