Advertisement

NMR, X-Ray Crystal Structure Studies and Mechanism for Formation of a Novel Di-gallium Complex and 5-Methoxy-4,5,6-triphenyl-4,5-dihydro-1,2,4-triazene-3(2H)-thione

  • T. K. VenkatachalamEmail author
  • Paul V. Bernhardt
  • G. K. Pierens
  • D. C. Reutens
Original Paper

Abstract

Gallium complexes of bis-thiosemicarbazones were prepared and characterized using NMR and X-ray crystallography. Formation of a gallium nitrate complex was proven by NMR spectroscopy. Surprisingly, this complex was found to convert on standing to a new hydroxido-bridged di-gallium complex. The X-ray crystal structure of the digallium complex is described. Similarly, a triazene compound was formed during the preparation of the gallium complex comprising a tetraphenyl unit in the bis-thiosemicarbazone structure. We propose a mechanism for the formation of both the di-gallium species as well as triazene compound in solution. The lattice parameters for the digallium complex is as follows: a: 17.6854(13) Å, b:16.6492(7) Å, c: 21.4659(14) Å, β = 112.383(8)°.

Graphical Abstract

Gallium complexes of bis-thiosemicarbazones were prepared and were found to convert to a new hydroxido-bridged di-gallium complex

Keywords

Synthesis NMR X-ray crystallography Triazene Mechanism 

Notes

Acknowledgements

This work was partially supported by an ARC Linkage Project Grant LP 130100703 (D.R.). We thank our colleagues at the Centre for Advanced Imaging for their help during the course of this investigation.

Supplementary material

10870_2018_745_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1101 KB)

References

  1. 1.
    Abram S, Maichle-Mössmer C, Abram U (1998) Polyhedron 17(1):131–143CrossRefGoogle Scholar
  2. 2.
    Chan J, Thompson AL, Jones MW, Peach JM (2010) Inorg Chim Acta 363(6):1140–1149CrossRefGoogle Scholar
  3. 3.
    Molter A, Mohr F (2011) Dalton Trans 40(14):3754–3758PubMedGoogle Scholar
  4. 4.
    Bermejo E, Carballo R, Castiñeiras A, Domínguez R, Liberta AE, Maichle-Mössmer C, Salberg MM, West DX (1999) Eur J Inorg Chem 1999(6):965–973CrossRefGoogle Scholar
  5. 5.
    Bermejo E, Carballo R, Castiñeiras A, Domínguez R, Maichle-Mössmer C, Strähle J, West DX (1999) Polyhedron 18(27):3695–3702CrossRefGoogle Scholar
  6. 6.
    Bermejo E, Castiñeiras A, García-Santos I, West DX (2005) Z Anorg Allg Chem 631(11):2011–2019CrossRefGoogle Scholar
  7. 7.
    Bermejo E, Castiñeiras A, West DX (2003) J Mol Struct 650(1):93–97CrossRefGoogle Scholar
  8. 8.
    Brown CA, Kaminsky W, Claborn KA, Goldberg KI, West DX (2002) J Braz Chem Soc 13(1):10–18CrossRefGoogle Scholar
  9. 9.
    Castiñeiras A, Garcia I, Bermejo E, West DX (2000) Polyhedron 19(15):1873–1880CrossRefGoogle Scholar
  10. 10.
    Klayman DL, Lin AJ, Hoch JM, Scovill JP, Lambros C, Dobek AS (1984) J Pharm Sci 73(12):1763–1767CrossRefGoogle Scholar
  11. 11.
    Kovala-Demertzi D, Domopoulou A, Demertzis MA, Papageorgiou A, West DX (1997) Polyhedron 16(20):3625–3633CrossRefGoogle Scholar
  12. 12.
    Kovala-Demertzi D, Miller JR, Kourkoumelis N, Hadjikakou SK, Demertzis MA (1999) Polyhedron 18(7):1005–1013CrossRefGoogle Scholar
  13. 13.
    West DX, Bain GA, Butcher RJ, Jasinski JP, Li Y, Pozdniakiv RY, Valdés-Martínez J, Toscano RA, Hernández-Ortega S (1996) Polyhedron 15(4):665–674CrossRefGoogle Scholar
  14. 14.
    West DX, Carlson CS, Bouck KJ, Liberta AE (1991) Transit Met Chem 16(2):271–275CrossRefGoogle Scholar
  15. 15.
    Diaz A, García I, Cao R, Beraldo H, Salberg MM, West DX, González L, Ochoa E (1997) Polyhedron 16(20):3549–3555CrossRefGoogle Scholar
  16. 16.
    West DX, El-Sawaf AK, Bain GA (1997) Transit Met Chem 23(1):1–6CrossRefGoogle Scholar
  17. 17.
    West DX, Ives JS, Krejci J, Salberg MM, Zumbahlen TL, Bain GA, Liberta AE, Valdes-Martinez J, Hernandez-Ortiz S, Toscano RA (1995) Polyhedron 14(15–16):2189–2200CrossRefGoogle Scholar
  18. 18.
    West DX, Liberta AE, Padhye SB, Chikate RC, Sonawane PB, Kumbhar AS, Yerande RG (1993) Coord Chem Rev 123(1–2):49–71CrossRefGoogle Scholar
  19. 19.
    West DX, Salberg MM, Bain GA, Liberta AE (1997) Transit Met Chem 22(2):180–184CrossRefGoogle Scholar
  20. 20.
    West DX, Stark AM, Bain GA, Liberta AE (1996) Transit Met Chem 21(4):289–295CrossRefGoogle Scholar
  21. 21.
    Yadav B, Kumar V, Yadav M (1998) Indian J Pure Appl Phys 36(10):557–566Google Scholar
  22. 22.
    Wadas TJ, Wong EH, Weisman GR, Anderson CJ (2010) Chem Rev 110(5):2858–2902CrossRefGoogle Scholar
  23. 23.
    Pascu SI, Waghorn PA, Conry TD, Betts HM, Dilworth JR, Churchill GC, Pokrovska T, Christlieb M, Aigbirhio FI, Warren JE (2007) Dalton Trans 43:4988–4997CrossRefGoogle Scholar
  24. 24.
    Pascu SI, Waghorn PA, Conry TD, Lin B, Betts HM, Dilworth JR, Sim RB, Churchill GC, Aigbirhio FI, Warren JE (2008) Dalton Trans 16:2107–2110CrossRefGoogle Scholar
  25. 25.
    MacroModel, version 2016-3, Schrödinger. LLC, New York (2016)Google Scholar
  26. 26.
    Sheldrick GM (2008) Acta Crystallogr A 64(1):112–122CrossRefGoogle Scholar
  27. 27.
    Farrugia LJ (1999) J Appl Crystallogr 32(4):837–838CrossRefGoogle Scholar
  28. 28.
    Farrugia LJ (2012) J Appl Crystallogr 45(4):849–854CrossRefGoogle Scholar
  29. 29.
    Venkatachalam T, Pierens G, Bernhardt PV, Stimson D, Bhalla R, Lambert L, Reutens D (2016) Aust J Chem 69(9):1033–1048CrossRefGoogle Scholar
  30. 30.
    Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GC (1984) J Chem Soc 7:1349–1356Google Scholar
  31. 31.
    Calatayud DG, Escolar FJ, López-Torres E, Mendiola MA (2007) Helv Chim Acta 90(11):2201–2216CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • T. K. Venkatachalam
    • 1
    Email author
  • Paul V. Bernhardt
    • 2
  • G. K. Pierens
    • 1
  • D. C. Reutens
    • 1
  1. 1.Center for Advanced ImagingThe University of QueenslandBrisbaneAustralia
  2. 2.School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneAustralia

Personalised recommendations