Journal of Chemical Crystallography

, Volume 49, Issue 1, pp 8–20 | Cite as

Syntheses and Crystal Structures of Mn(II), Ni(II) and Cu(II) Coordination Compounds Assembled by Maleato and Dimethyl-2,2′-bipyridines

  • Nadia Morales-Morales
  • Mariana Rodríguez-Olivas
  • Antonio Téllez-López
  • Diego Martínez-Otero
  • Raúl A. Morales-Luckie
  • Víctor Sánchez-MendietaEmail author
Original Paper


Three complexes: {[Mn(H2O)(mal)(5dmb)·H2O}n] (1); [Ni2(H2O)6(mal)2(4dmb)2]·3H2O (2); [Cu2(mal)2(4dmb)2]·3H2O (3); where mal = maleato, 4dmb = 4,4′-dimethyl-2,2′-bipyridine, and 5dmb = 5,5′-dimethyl-2,2′-bipyridine; have been synthesized, using self-assembly solution reactions at ambient conditions. Crystallographic studies show that 1 crystallizes in an orthorhombic system, space group Pna21, with a = 17.4067(4) Å, b = 11.9672(2) Å, c = 8.2075(2) Å; V = 1709.70(6) Å3. Complex 2 has a monoclinic system, space group C2/c, with a = 21.206(8) Å, b = 7.523(3) Å, c = 25.399(10) Å; β = 109.755(8)°; V = 3813(2) Å3. Complex 3 crystallizes in a monoclinic system, space group C2/c, with a = 14.6976(12) Å, b = 11.3849(10) Å, c = 22.1638(18) Å; β = 101.2998(17)°; V = 3636.8(5) Å3. Complex 1 is a one-dimensional (1D) polymer, where the Mn centers are six-coordinated in a distorted octahedral geometry. 2 is a dinuclear complex, generated by supramolecular interactions, where Ni ions are six-coordinated in a distorted octahedral geometry. 3 is a dinuclear complex with five-coordinated Cu ions having a distorted square pyramidal geometry. All three complexes exhibit hydrogen bonding interactions, which generate 2D supramolecular structures in 1 and 2, whereas in complex 3 a 3D supramolecular array is formed. These novel complexes prove that the self-assembly of a dicarboxylate ligand (mal) with three different first-row transition metals, can afford coordination compounds with diverse structural characteristics and dimensionality, which can be attributed to the different ligand coordination modes and the coordination properties of the employed metals.

Graphical Abstract

Divergent coordination compounds of three different transition metals have been obtained due to the versatility in the coordination modes of maleato ligand.


Mn coordination polymer Ni dinuclear complex Cu dinuclear complex Maleate Dialkyl-2,2′-bipyridine 



Authors are thankful to M. en C. Alejandra Nuñez Pineda (CCIQS UAEM-UNAM) for elemental analysis of compounds. Funding for this work was provided by Universidad Autónoma del Estado de México.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zhou HC, Long JR, Yaghi OM (2012) Chem Rev 112:673CrossRefGoogle Scholar
  2. 2.
    Dua M, Li CP, Liub CS, Fang SM (2013) Coord Chem Rev 257:1282CrossRefGoogle Scholar
  3. 3.
    Das D, Banerjee R, Mondal R,. Howard JAK, Boese R, Desiraju GR (2006) Chem Commun 555Google Scholar
  4. 4.
    Zhou XH, Li L, Li HH, Li A, Yang T, Huang W (2013) Dalton Trans 42:12403CrossRefGoogle Scholar
  5. 5.
    Lusby PJ (2013) Annu Rep Prog Chem A 109:254CrossRefGoogle Scholar
  6. 6.
    Lescop C (2017) Acc Chem Res 50(4):885CrossRefGoogle Scholar
  7. 7.
    Ye BH, Tong ML, Chen XM (2005) Coord Chem Rev 249:545CrossRefGoogle Scholar
  8. 8.
    Curiel D, Más-Montoya M, Sánchez G (2014) Coord Chem Rev 284:19CrossRefGoogle Scholar
  9. 9.
    Rosales-Vázquez LD, Sánchez-Mendieta V, Dorazco-González A, Martínez-Otero D, García-Orozco I, Morales-Luckie RA, Jaramillo-García J, Téllez-López A (2017) Dalton Trans 46:12516CrossRefGoogle Scholar
  10. 10.
    Téllez-López A, Jaramillo-García J, Martínez-Domínguez R, Morales-Luckie RA, Camacho-López MA, Escudero R, Sánchez-Mendieta V (2015) Polyhedron 100:373CrossRefGoogle Scholar
  11. 11.
    Téllez-López A, Sánchez-Mendieta V, Jaramillo-García J, Rosales-Vázquez LD, García-Orozco I, Morales-Luckie RA, Escudero R, Morales-Leal F (2016) Trans Met Chem 41:879CrossRefGoogle Scholar
  12. 12.
    Zhao RL, Yue KF, Zhou C, Cheng QDM, Shi JT, Liu YL, Wanga YY (2013) Inorg Chim Acta 402:25CrossRefGoogle Scholar
  13. 13.
    Farnum GA, Martin DP, Sposato LK, Supkowski RM, LaDuca RL (2010) Inorg Chim Acta 363:250CrossRefGoogle Scholar
  14. 14.
    Hancock RD (2013) Chem Soc Rev 42:1500CrossRefGoogle Scholar
  15. 15.
    Alizadeh R, Amani V (2016) Inorg Chim Acta 443:151CrossRefGoogle Scholar
  16. 16.
    Lopes LB, Corrêa CC, Guedes GP, Vaz MGF, Diniz R, Machado FC (2013) Polyhedron 50:16CrossRefGoogle Scholar
  17. 17.
    Zhang GM, Li Y, Zou XZ, Zhang JA, Gu JZ, Kirillov AM (2016) Trans Met Chem 41:153CrossRefGoogle Scholar
  18. 18.
    APEX 2 Software Suite. Bruker AXS Inc., MadisonGoogle Scholar
  19. 19.
    Sheldrick GM (2008) Acta Crystallogr A 64:112CrossRefGoogle Scholar
  20. 20.
    Hübschle CB, Sheldrick GM, Dittrich B, shelXle (2011) Appl Cryst 44:1281CrossRefGoogle Scholar
  21. 21.
    Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0-New features for the visualization and investigation of crystal structures. J Appl Cryst 41:466CrossRefGoogle Scholar
  22. 22.
    Rodríguez-Martín Y, Hernández-Molina M, Delgado FS, Pasán J, Ruiz-Pérez C, Sanchiz J, Lloret F, Julve M (2002) Cryst Eng Comm 4(87):522CrossRefGoogle Scholar
  23. 23.
    Rodríguez-Martín Y, Hernández-Molina M, Delgado FS, Pasán J, Ruiz-Pérez C, Sanchiz J, Lloret F, Julve M (2003) Dalton Trans 11:2359CrossRefGoogle Scholar
  24. 24.
    Ruiz-Pérez C, Hernández-Molina M, Sanchiz J, López T, Lloret F, Julve M (2000) Inorg Chim Acta 298:245CrossRefGoogle Scholar
  25. 25.
    Jiang CH, Qi YM, Sun Y, Chi Q, Guo YM (2012) J Mol Struct 1017:65CrossRefGoogle Scholar
  26. 26.
    Choudhury SR, Lee HM, Hsiao TH, Colacio E, Jana AD, Mukhopadhyay S (2010) J Mol Struct 967:131CrossRefGoogle Scholar
  27. 27.
    Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GC (1984) J Chem Soc Dalton Trans 1349Google Scholar
  28. 28.
    Youngme S, Cheansirisomboon A, Danvirutai C, Pakawatchai C, Chaichit N (2008) Inorg Chem Commun 11:57CrossRefGoogle Scholar
  29. 29.
    Tokii T, Watanabe N, Nakashima M, Muto Y, Morooka M, Ohba S, Saito Y (1990) Bull Chem Soc Jpn 63:364CrossRefGoogle Scholar
  30. 30.
    Boonmak J, Youngme S, Chotkhun T, Engkagul C, Chaichit N, van Albada GA, Reedijk J (2008) Inorg Chem Commun 11:1231CrossRefGoogle Scholar
  31. 31.
    Nath JK, Mondal A, Powell AK, Baruah JB (2014) Cryst Growth Des 14:4735CrossRefGoogle Scholar
  32. 32.
    Das K, Panda U, Datta A, Roy S, Mondal S, Massera C, Askun T, Celikboyun P, Garribba E, Sinha C, Anand K, Akitsu T, Kobayashi K (2015) New J Chem 39:7309CrossRefGoogle Scholar
  33. 33.
    Novoa N, Roisnel T, Dorcet V, Cador O, Manzur C, Carrillo D, Hamon JR (2016) New J Chem 40:5920CrossRefGoogle Scholar
  34. 34.
    Mahapatra P, Ghosh S, Giri S, Rane V, Kadam R, Drew MGB, Ghosh A (2017) Inorg Chem 56:5105CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Facultad de QuímicaUniversidad Autónoma del Estado de MéxicoTolucaMexico
  2. 2.Centro Conjunto de Investigación en Química Sustentable UAEM-UNAMTolucaMexico

Personalised recommendations