Journal of Chemical Crystallography

, Volume 48, Issue 4, pp 164–169 | Cite as

On the Chiral Z′ = 2 Crystal Structure of [Cu2(H2valdien)2](NO3)2 [H2valdien = N1,N3-bis(3-methoxysalicylidene)diethylenetriamine]

  • Shabana Noor
  • Richard Goddard
  • Sarvendra Kumar
  • Nafees Ahmad
  • Suhail Sabir
  • Partha Mitra
  • Rüdiger W. Seidel
Original Paper


The crystal and molecular structure of [Cu2(H2valdien)2](NO3)2 (1), whereby H2valdien is the known Schiff base ligand N1,N3-bis(3-methoxysalicylidene)diethylenetriamine, is reported. In 1, two H2valdien ligands join two CuII ions in a chelate–spacer–chelate mode, in which the protonated aliphatic secondary amine moieties represent the spacers, to form a double helix. Both CuII ions in the homodinuclear cationic complex exhibit similar distorted square-planar N2O2 coordination spheres. The axially chiral molecular structure of the [Cu2(H2valdien)2]2+ complex features intramolecular π···π stacking and N–H⋯O hydrogen bonds in the crystal. Compound 1 crystallizes in the Sohncke space group P21, with a = 14.165(3), b = 13.7755(13), c = 21.1185(4) Å, β = 102.199(4)°, and with two enantiomeric molecules in the asymmetric unit (Z′ = 2). The two crystallographically unique [Cu2(H2valdien)2]2+ enantiomers are related by pseudo inversion symmetry.

Graphical Abstract

The pseudo centrosymmetric chiral Z′ = 2 crystal structure (space group P21) of [Cu2(H2valdien)2](NO3)2, whereby H2valdien is the known Schiff base ligand N1,N3-bis(3-methoxysalicylidene)diethylenetriamine, is reported.


Copper Schiff base π⋯π stacking Hydrogen bonding Pseudosymmetry Crystal structure 



This work was supported by grants from the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, New Delhi, India (SERB/F/815/2014-15). SN would like to thank the chairman of the Department of Chemistry, Aligarh Muslim University, India, who facilitated this research.


  1. 1.
    Abu-Dief AM, Mohamed IM (2015) Beni-Suef Univ J Appl Sci 4:119–133Google Scholar
  2. 2.
    Zoubi WA, Ko YG (2016) Appl Organomet Chem 31:e3574CrossRefGoogle Scholar
  3. 3.
    Andruh M (2015) Dalton Trans 44:16633–16653CrossRefGoogle Scholar
  4. 4.
    Kocak C, Oylumluoglu G, Donmez A, Coban MB, Erkarslan U, Aygun M, Kara H (2017) Acta Cryst C73:414–419Google Scholar
  5. 5.
    Donmez A, Coban MB, Kocak C, Oylumluoglu G, Baisch U, Kara H (2017) Mol Cryst Liq Cryst 652:213–222CrossRefGoogle Scholar
  6. 6.
    Gönül I, Burak AY, Karaca S, Şahin O, Serin S (2018) Inorg Chim Acta 477:75–83CrossRefGoogle Scholar
  7. 7.
    Buta I, Cseh L, Cretu C, Aparaschiei D, Maxim C, Lönnecke P, Hey-Hawkins E, Stanica N, Ohler E, Rentschler E, Andruh M, Costisor O (2018) Inorg Chim Acta 475:133–141CrossRefGoogle Scholar
  8. 8.
    Zhao L, Wu J, Xue S, Tang J (2012) Chem Asian J 7:2419–2423CrossRefGoogle Scholar
  9. 9.
    Zhao M, Ou S, Wu C-D (2014) Acc Chem Res 47:1199–1207CrossRefGoogle Scholar
  10. 10.
    Liu C-M, Zhang D-Q, Hao X, Zhu D-B (2014) Chem Asian J 9:1847–1853CrossRefGoogle Scholar
  11. 11.
    Kong F-R, Zhang M (1999) Chem J Chin Univ 20:839–842Google Scholar
  12. 12.
    Habib F, Lin P-H, Long J, Korobkov I, Wernsdorfer W, Murugesu M (2011) J Am Chem Soc 133:8830–8833CrossRefGoogle Scholar
  13. 13.
    Long J, Habib F, Lin P-H, Korobkov I, Enright G, Ungur L, Wernsdorfer W, Chibotaru LF, Murugesu M (2011) J Am Chem Soc 133:5319–5328CrossRefGoogle Scholar
  14. 14.
    Zhao L, Xue S, Tang J (2012) Inorg Chem 51:5994–5996CrossRefGoogle Scholar
  15. 15.
    Habib F, Brunet G, Vieru V, Korobkov I, Chibotaru LF, Murugesu M (2013) J Am Chem Soc 135:13242–13245CrossRefGoogle Scholar
  16. 16.
    Bag P, Chakraborty A, Rouzières M, Clérac R, Butcher RJ, Chandrasekhar V (2014) Cryst Growth Des 14:4583–4592CrossRefGoogle Scholar
  17. 17.
    Brunet G, Habib F, Korobkov I, Murugesu M (2015) Inorg Chem 54:6195–6202CrossRefGoogle Scholar
  18. 18.
    Benetollo F, Bernardo PD, Tamburini S, Vigato P, Zanonato P (2008) Inorg Chem Commun 11:246–251CrossRefGoogle Scholar
  19. 19.
    Zou C, Wu C-D (2012) Dalton Trans 41:3879–3888CrossRefGoogle Scholar
  20. 20.
    Usman M, Arjmand F, Khan RA, Alsalme A, Ahmad M, Tabassum S (2017) RSC Adv 7:47920–47932CrossRefGoogle Scholar
  21. 21.
    Naskar B, Modak R, Maiti DK, Drew MGB, Bauzá A, Frontera A, Mukhopadhyay CD, Mishra S, Saha KD, Goswami S (2017) Dalton Trans 46:9498–9510CrossRefGoogle Scholar
  22. 22.
    Chakraborty J, Thakurta S, Samanta B, Ray A, Pilet G, Batten SR, Jensen P, Mitra S (2007) Polyhedron 26:5139–5149CrossRefGoogle Scholar
  23. 23.
    Bruker Sadabs Bruker AXS Inc., Madison, Wisconsin, USA (2001)Google Scholar
  24. 24.
    Sheldrick GM (2015) Acta Cryst A71:3–8Google Scholar
  25. 25.
    Sheldrick GM (2015) Acta Cryst C71:3–8Google Scholar
  26. 26.
    Flack HD (1983) Acta Cryst A39:876–881CrossRefGoogle Scholar
  27. 27.
    Brandenburg K (2014) Diamond Crystal Impact GbR. Bonn, GermanyGoogle Scholar
  28. 28.
    Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) J Appl Cryst 41:466–470CrossRefGoogle Scholar
  29. 29.
    Yang L, Powell DR, Houser RP (2007) Dalton Trans 0:955–964CrossRefGoogle Scholar
  30. 30.
    Okuniewski A, Rosiak D, Chojnacki J, Becker B (2015) Polyhedron 90:47–57CrossRefGoogle Scholar
  31. 31.
    Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) Acta Cryst B72:171–179Google Scholar
  32. 32.
    Haynes WM (ed) (2011) CRC handbook of chemistry and physics, 92nd edn. CRC Press, Boca RatonGoogle Scholar
  33. 33.
    Ji C, Sun Z, Zhang S-Q, Chen T, Zhou P, Tang Y, Zhao S, Luo J (2014) J Mater Chem C 2:6134–6139CrossRefGoogle Scholar
  34. 34.
    Sun W, Shan G (2015) Acta Cryst E71:o361Google Scholar
  35. 35.
    Das K, Patra C, Sen C, Datta A, Massera C, Garribba E, Fallah MSE, Beyene BB, Hung C-H, Sinha C, Askun T, Celikboyun P, Escudero D, Frontera A (2017) J Biol Inorg Chem 22:481–495CrossRefGoogle Scholar
  36. 36.
    Spek AL (2015) Acta Cryst C71:9–18Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shabana Noor
    • 1
  • Richard Goddard
    • 2
  • Sarvendra Kumar
    • 3
  • Nafees Ahmad
    • 1
  • Suhail Sabir
    • 1
  • Partha Mitra
    • 4
  • Rüdiger W. Seidel
    • 2
  1. 1.Department of ChemistryAligarh Muslim UniversityAligarhIndia
  2. 2.Max-Planck-Institut für KohlenforschungMülheim an der RuhrGermany
  3. 3.Institute of Functional Nano & Soft MaterialsSoochow UniversitySuzhouPeople’s Republic of China
  4. 4.Indian Association for Cultivation of ScienceKolkataIndia

Personalised recommendations