Journal of Chemical Crystallography

, Volume 48, Issue 4, pp 138–144 | Cite as

Synthesis and Crystal Structure of a Copper(II) Benzoate Complex Bearing a Bis-2,2′-Tetrahydrofuryl Peroxide Moiety

  • José A. Solera-Rojas
  • Lennard Krause
  • Mavis L. Montero
  • Dietmar StalkeEmail author
  • Leslie W. PinedaEmail author
Original Paper


Complex [Cu2(ben)4·2THF−(η1–O2)] (2) (ben = C6H5CO2 benzoate; THF = tetrahydrofuran) was isolated when a solution of Cu2(ben)4·2THF (1) in THF upon natural sunlight irradiation yields crystals suitable for single-crystal X-ray diffraction analysis. 2, crystallized in the C2/c monoclinic space group, Z = 8, V = 3394.2 (4) Å3, and the unit cell parameters a = 9.7935 (7) Å, b = 19.0055 (13) Å, c = 18.2997 (13) Å, α = 90°, β = 94.7996 (11)º and γ = 90°. This is the first example of a polymeric copper(II) carboxylate compound stabilizing a peroxo group via its apical ligand (THF molecule). Additionally, 2 was also characterized by elemental analysis, Fourier-transformed infrared spectroscopy (FTIR) and Raman spectroscopy.

Graphical Abstract

Upon sunlight irradiation a solution of Cu2(ben)4·2THF (ben = C6H5CO2, benzoate; THF = tetrahydrofuran) in THF yields [Cu2(ben)4·2THF–(η1–O2)] as a polymeric copper(II) carboxylate compound stabilizing a peroxo group via its apical ligand (THF molecule).


Copper(II) benzoate Tetrahydrofuryl peroxide Coordination complex Sunlight-promoted reaction Peroxide formation 



Dedicated to Professor Dietmar Stalke on the occasion of his 60th birthday. The authors are thankful to Centro de Electroquímica y Energía Química (CELEQ), Escuela de Química, Sistema de Estudios de Posgrado (SEP), and Vicerrectoría de Investigación, Universidad de Costa Rica, for financial support (Project Nos. 804-B7-279 and 804-B0-650).

Supplementary material

10870_2018_721_MOESM1_ESM.docx (188 kb)
Supplementary material 1 (DOCX 187 KB)


  1. 1.
    Katzsch F, Münch AS, Mertens FORL, Weber E (2014) Copper(II) benzoate dimers coordinated by different linear alcohols—A systematic study of crystal structures. J Mol Struct 1064:122–129CrossRefGoogle Scholar
  2. 2.
    Deacon GB, Phillips RJ (1980) Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev 33:227–250CrossRefGoogle Scholar
  3. 3.
    Chen ZN, Liu SX, Qiu J, Wang ZM, Ling J (1994) Structure and magnetic studies of a two-dimensional sheet-like copper(II) complex with bridging pyridine-4-carboxylate and trans-oxamidate ligands. J Chem Soc Dalton Trans 20:2989–2993CrossRefGoogle Scholar
  4. 4.
    Harcourt R, Skrezenek F, Maclagan R (1986) Nonempirical valence bond studies of the origin of the antiferromagnetism of copper(II) carboxylate dimers. J Am Chem Soc 108:5403–5408CrossRefGoogle Scholar
  5. 5.
    Inoue M, Kishita M, Kubo M (1964) Magnetic moments of copper(II) salicylate, copper(II) benzoate, and some related compounds. Inorg Chem 3:239–242CrossRefGoogle Scholar
  6. 6.
    Tokii T, Ikeda T, Muto Y (1982) Synthesis and magnetic susceptibility of dimeric copper(II) acetate adducts with triphenylphosphine or tripheynylphosphine oxide. Bull Chem Soc Jpn 55:3925–3926CrossRefGoogle Scholar
  7. 7.
    Koizumi H, Osaki K, Watanabé T (1963) Crystal structure of cupric benzoate trihydrated Cu(C6H5COO)2·3H2O. J Phys Soc Japan 18:117–124CrossRefGoogle Scholar
  8. 8.
    de Meester P, Fletcher SR, Skapski AC (1973) Refined crystal structure of tetra-µ-acetato-bisaquodicopper(II). J Chem Soc Dalton Trans 23:2575–2578CrossRefGoogle Scholar
  9. 9.
    Yang X-P, Chen C-Z, Shao S-B, Lin Z-B, Gao D-S (1997) Synthesis and structure of [Cu(µ-C6H5COO)2(C4H8O)]2. Jiegou Huaxue (Chin J Struct Chem) 17:223Google Scholar
  10. 10.
    Kozlevčar B, Murn A, Podlipnik K, Lah N, Leban I, Šegedin P (2004) Two types of pyridine ligands in mononuclear and dinuclear copper(II) carboxylates. Croat Chem Acta 77:613–618Google Scholar
  11. 11.
    Denisova TO, Amel’chenkova EV, Pruss IV, Dobrokhotova ZV, Fialkovskii OP, Nefedov SE (2006) Copper(II) trimethylacetate complexes with 3,5-dimethylpyrazole. Russ J Inorg Chem 51:1020–1064CrossRefGoogle Scholar
  12. 12.
    Lah N, Giester G, Šegedin P, Murn A, Podlipnik K, Leban I (2001) Two dimeric Cu(II) benzoate derivatives solvated with acetonitrile. Acta Crystallogr C 57:546–548CrossRefGoogle Scholar
  13. 13.
    Petrič M, Leban I, Šegedin P (1993) The crystal and molecular structure of tetrakis(µ-octanoato-O,O’)-bis(pyridine)dicopper(II). Polyhedron 12:1973–1976CrossRefGoogle Scholar
  14. 14.
    Sharma S, Park J, Kim M, Kwak JH, Jung YH, Kim IS (2013) Cu(II)-catalyzed oxidative esterification of 2-carbonyl substituted phenols from the alcohol oxidation level. Tetrahedron 69:9391–9397CrossRefGoogle Scholar
  15. 15.
    Hwang IH, Jo YD, Kim H, Kim KB, Jung KD, Kim C, Kim Y, Kim SJ (2013) Catalytic transesterification reactions of one-dimensional coordination polymers containing paddle-wheel-type units connected by various bridging ligands. Inorg Chim Acta 402:39–45CrossRefGoogle Scholar
  16. 16.
    Balaraman K, Kesavan V (2010) Efficient Copper(II) acetate catalyzed homo- and heterocoupling of terminal alkynes at ambient conditions. Synthesis 2010:3461–3466CrossRefGoogle Scholar
  17. 17.
    Mishra R, Ülker E, Karadas F (2017) One-Dimensional Copper(II) coordination polymer as an electrocatalyst for water oxidation. ChemElectroChem 4:75–80CrossRefGoogle Scholar
  18. 18.
    Nikolić MV, Mijajlović M, Jevtić VV, Ratković ZR, Novaković SB, Bogdanović GA, Milovanović J, Arsenijević A, Stojanović B, Trifunović SR, Radić GP (2016) Cytotoxicity of copper(II)-complexes with some S-alkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II)-complex with S-ethyl derivative of thiosalicylic acid. J Mol Struct 1116:264–271CrossRefGoogle Scholar
  19. 19.
    Kozlevčar B, Lah N, Žlindra D, Leban I, Šegedin P (2001) Copper(II) benzoates and acetates with 2-aminopyridine. Acta Chim Slov 48:363–374Google Scholar
  20. 20.
    Martín-Alberca C, García-Ruiz C (2014) Analytical techniques for the analysis of consumer fireworks. TrAC-Trends Anal Chem 56:27–36CrossRefGoogle Scholar
  21. 21.
    Sánchez A, Urcuyo R, González-Flores D, Montalberth-Smith R, León-Rojas C, Pineda LW, Montero ML (2012) Electroactive copper(II) bimetallic self-assembled multilayers on Si(100). Surf Sci 606:527–535CrossRefGoogle Scholar
  22. 22.
    Sánchez MA, Paniagua SA, Borge I, Viales C, Montero ML (2014) Lewis basicity, adhesion thermodynamic work and coordinating ability on aminated silicon surfaces. Appl Surf Sci 317:1060–1067CrossRefGoogle Scholar
  23. 23.
    Stalke D (1998) Cryo crystal structure determination and application to intermediates. Chem Soc Rev 27:171–178CrossRefGoogle Scholar
  24. 24.
    Kottke T, Stalke D (1993) Crystal handling at low temperatures. J Appl Crystallogr 26:615–619CrossRefGoogle Scholar
  25. 25.
    Schulz T, Meindl K, Leusser D, Stern D, Graf J, Michaelsen C, Ruf M, Sheldrick GM, Stalke D (2009) A comparison of a microfocus X-ray source and a conventional sealed tube for crystal structure determination. J Appl Crystallogr 42:885–891CrossRefGoogle Scholar
  26. 26.
    SAINT (2000) Bruker AXS Inc. Madison, Wisconsin (EEUU)Google Scholar
  27. 27.
    Sheldrick GM (2000) SADABS. Universität Göttingen, GöttingenGoogle Scholar
  28. 28.
    Sheldrick GM (1990) Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr A 46:467–473CrossRefGoogle Scholar
  29. 29.
    Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122CrossRefGoogle Scholar
  30. 30.
    Müller P, Herbst-Imer R, Spek AL, Schneider TR, Sawaya MR (2006) Crystal structure refinement: a crystallographer’s guide to SHELXL, IUCr texts on crystallography. Oxford University Press, OxfordCrossRefGoogle Scholar
  31. 31.
    Hübschle CB, Sheldrick GM, Dittrich B (2011) ShelXle: a Qt graphical user interface for SHELXL. J Appl Crystallogr 44:1281–1284CrossRefGoogle Scholar
  32. 32.
    Di Tommaso S, Rotureau P, Crescenzi O, Adamo C (2011) Oxidation mechanism of diethyl ether: a complex process for a simple molecule. Phys Chem Chem Phys 13:14636–14645CrossRefGoogle Scholar
  33. 33.
    Zhang B, Cho M, Fortner JD, Lee J, Huang CH, Hughes JB, Kim JH (2009) Delineating oxidative processes of aqueous C60 preparations: role of THF peroxide. Environ Sci Technol 43:108–113CrossRefGoogle Scholar
  34. 34.
    Matsubara H, Suzuki S, Hirano S (2015) An ab initio and DFT study of the autoxidation of THF and THP. Org Biomol Chem 13:4686–4692CrossRefGoogle Scholar
  35. 35.
    Moreira RF, Tshuva EY, Lippard SJ (2004) Catalytic oxidative ring opening of THF promoted by a carboxylate-bridged diiron complex, triarylphosphines, and dioxygen. Inorg Chem 43:4427–4434CrossRefGoogle Scholar
  36. 36.
    Shul’pin GB, Nizova GV, Kozlov YN (1996) Photochemical aerobic oxidation of alkanes promoted by iron complexes. New J Chem 20:1243–1256Google Scholar
  37. 37.
    Imai H (1976) Catalytic dehydration of ethers on nickel oxide-silica-alumina. Bull Chem Soc Jpn 49:2802–2804CrossRefGoogle Scholar
  38. 38.
    Yao S, Xiong Y, Vogt M, Grützmacher H, Herwig C, Limberg C, Driess M (2009) O-O bond activation in heterobimetallic peroxides: Synthesis of the peroxide [LNi(µ,η22-O2)K] and its conversion into a bis(µ-Hydroxo) nickel zinc complex. Angew Chem Int Ed 48:8107–8110CrossRefGoogle Scholar
  39. 39.
    Li P, Alper H (1992) Cobalt-catalyzed oxidation of ethers using oxygen. J Mol Catal 72:143–152CrossRefGoogle Scholar
  40. 40.
    Setsune J, Ishimaru Y, Moriyama T, Kitao T (1991) Metallation of ethers with cobalt(II) porphyrins induced by reductive decomposition of hydroperoxides. J Chem Soc Chem Commun 8:556–557CrossRefGoogle Scholar
  41. 41.
    Redington RL, Olson WB, Cross PC (1962) Studies of hydrogen peroxide: the infrared spectrum and the internal rotation problem. J Chem Phys 36:1311–1326CrossRefGoogle Scholar
  42. 42.
    Tikhonova IA, Tugashov KI, Dolgushin FM, Korlyukov AA, Petrovskii PV, Klemenkova ZS, Shur VB (2009) Coordination chemistry of mercury-containing anticrowns. Synthesis and structures of the complexes of cyclic trimeric perfluoro-o-phenylenemercury with ethanol, THF and bis-2,2′-tetrahydrofuryl peroxide. J Organomet Chem 694:2604–2610CrossRefGoogle Scholar
  43. 43.
    Hamza F, Kickelbick G (2009) Synthesis of monomeric and dimeric copper(II) carboxylates bearing polymerizable groups and their performance in the copolymerization with MMA. Macromolecules 42:7762–7771CrossRefGoogle Scholar
  44. 44.
    Ramos MF, Duarte MLTS, Fausto R (1994) Investigation of the structure of the columnar liquid-crystalline phase of copper(II) carboxylates. J Chem Soc Faraday Trans 90:2953–2960CrossRefGoogle Scholar
  45. 45.
    Zabicky J (2006) Analytical and safety aspects of organic peroxides and related functional groups. In: Rappoport Z (ed) The chemistry of peroxides, Vol. 2. Wiley, Chichester, pp 597–774CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • José A. Solera-Rojas
    • 1
    • 2
  • Lennard Krause
    • 3
  • Mavis L. Montero
    • 1
    • 2
  • Dietmar Stalke
    • 3
    Email author
  • Leslie W. Pineda
    • 1
    • 2
    Email author
  1. 1.Centro de Electroquímica y Energía Química (CELEQ)Universidad de Costa RicaSan JoséCosta Rica
  2. 2.Escuela de QuímicaUniversidad de Costa RicaSan JoséCosta Rica
  3. 3.Institut für Anorganische ChemieUniversität GöttingenGöttingenGermany

Personalised recommendations