Metal- and Multicarboxylate-Dependent Structural Diversity in Metal–Organic Frameworks with Acylamide-Based Ligand
Abstract
Three new metal–organic frameworks, [Co2(L)2(ip)2·(H2O)4] (1), [Cu(L)(ip)·(H2O)2] (2), [Cd(µ-H2O)(L)(oip)·(H2O)3.5] (3) (ip = isophthalate, H2oip = 5-hydroxyl-isophthalate), built by acylamide-based ligand and multi-carboxylate ligand were synthesized and structurally characterized by X-ray crystallography. Complex 1 crystallizes in monoclinic space group P21, with a = 9.9171(3), b = 31.9531(10), c = 10.1780(3) Å, β = 118.8270(10)°. Complex 2 crystallizes in the monoclinic space group Cc, with a = 17.7490(3), b = 9.7363(2), c = 18.1202(3) Å, β = 115.0090(10)°. Complex 3 crystallizes in the monoclinic space group P21/c, with a = 9.7670(5), b = 30.3199(15), c = 10.3277(5) Å, β = 102.1680(10)°. All these compounds feature 2D 44 layers with two-fold interpenetration.
Graphical Abstract
Herein we describe the crystal structures of [Co2(L)2(ip)2(H2O)2]·(H2O)2 (1), [Cu(L)(ip)·(H2O)2] (2), [Cd(µ-H2O)(L)(oip)·(H2O)3.5] (3) (ip = isophthalate, H2oip = 5-hydroxyl-isophthalate). All these compounds feature 2D 44 layers with two-fold interpenetration.
Keywords
Metal–organic frameworks Multi-carboxylate ligand Crystal structure InterpenetrationNotes
Acknowledgements
We gratefully acknowledge financial support by the National Natural Science Foundation of China (No. 21401112).
References
- 1.Holman KT (2011) Angew Chem Int Ed 50:1228CrossRefGoogle Scholar
- 2.Dong XY, Li B, Ma BB, Li SJ, Dong M, Zhu YY, Zang SQ, Song Y, Hou HW, Mak TCW (2013) J Am Chem Soc 135:10214CrossRefPubMedPubMedCentralGoogle Scholar
- 3.Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Science 295:469CrossRefPubMedPubMedCentralGoogle Scholar
- 4.Deng H, Olson MA, Stoddart JF, Yaghi OM (2010) Nat Chem 2:439CrossRefPubMedPubMedCentralGoogle Scholar
- 5.Dong XY, Wang R, Li JB, Zang SQ, Hou HW, Mak TCW (2013) Chem Commun 49:10590CrossRefGoogle Scholar
- 6.Zhang X, Fang R, Wu H (2005) J Am Chem Soc 127:7670CrossRefPubMedPubMedCentralGoogle Scholar
- 7.Nouar F, Eubank JF, Bousquet T, Wojtas L, Zaworotko MJ, Eddaoudi M (2008) J Am Chem Soc 130:1833CrossRefPubMedPubMedCentralGoogle Scholar
- 8.Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) Science 309:2040CrossRefPubMedPubMedCentralGoogle Scholar
- 9.Rowsell JLC, Millward AR, Park KS, Yaghi OM (2004) J Am Chem Soc 126:5666CrossRefPubMedPubMedCentralGoogle Scholar
- 10.Ma LF, Meng QL, Li CP, Li B, Wang LY, Du M, Liang FP (2010) Cryst Growth Des 10:3063Google Scholar
- 11.Jiang HL, Tatsu Y, Lu ZH, Xu Q (2010) J Am Chem Soc 132:5586CrossRefPubMedPubMedCentralGoogle Scholar
- 12.Wang CY, Wilseck ZM, Supkowski RM, LaDuca RL (2011) CrystEngComm 13:1391CrossRefGoogle Scholar
- 13.Luo F, Zheng JM, Batten SR (2007) Chem Commun 3744Google Scholar
- 14.Luo F, Che YX, Zheng JM (2009) Microporous Mesoporous Mater 117:486CrossRefGoogle Scholar
- 15.Luo F, Ning Y, Luo MB, Huang GL (2010) CrystEngComm 12:2769CrossRefGoogle Scholar
- 16.Sheldrick GM (2002) SADABS 2.05. University of Göttingen, GöttingenGoogle Scholar
- 17.Sheldrick GM (1990) Acta Crystallogr A 46:457CrossRefGoogle Scholar
- 18.Sheldrick GM (1997) SHELXL-97, program for crystal structures refinement. University of Göttingen, GöttingenGoogle Scholar
- 19.Fan HT, Li B, Zhao Q, Chen BK, Feng CQ (2015) Chin J Inorg Chem 31:848Google Scholar
- 20.Huang RW, Li B, Zhang YQ, Zhao Y, Zang SQ, Xu H (2014) Inorg Chem Commun 39:106CrossRefGoogle Scholar
- 21.Li B, Dong MM, Fan HT, Feng CQ, Zang SQ, Wang LY (2014) Cryst Growth Des 14:6325CrossRefGoogle Scholar
- 22.Blatov VA, Shevchenko AP, Serezhkin VN (2000) J Appl Crystallogr 33:1193CrossRefGoogle Scholar