Advertisement

Journal of Chemical Crystallography

, Volume 48, Issue 3, pp 109–116 | Cite as

Two Achiral Isomers of Chloronitropyridine Crystallize as Polar Materials with Different Molecular Packing Motifs Based on Similar Intermolecular Interactions

  • Haley Merritt
  • Joseph M. Tanski
Original Paper

Abstract

The molecular structures of two of the ten possible isomers of chloronitropyridine have been studied by spectroscopic techniques and single crystal X-ray diffraction. The structures of 2-chloro-4-nitropyridine (1) [monoclinic, Pc, a = 3.7711(14) Å, b = 8.919(3) Å, c = 9.324(3) Å, β = 99.506(5)°] and 5-chloro-2-nitropyridine (2) [triclinic, P1, a = 3.7559(13) Å, b = 6.071(2) Å, c = 6.939(2) Å, α = 85.703(5)°, β = 89.619(5)°, γ = 75.189(5)°] reveal that the isomers crystallize in non-centrosymmetric space groups with different molecular packing motifs based on similar intermolecular interactions. Each compound packs into molecular sheets via short chlorine–oxygen contacts and C–H⋯X (X = O, N) interactions of the nitro oxygen atoms and the pyridine nitrogen atom. The sheets further pack with an offset face-to-face π-stacking geometrical arrangement of the aromatic rings to form the three-dimensional structures. Achiral 2-chloro-4-nitropyridine (1) crystallizes as a polar material in the non-centrosymmetric and non-enantiomorphous space group Pc while the isomeric achiral compound 5-chloro-2-nitropyridine (2) forms a polar material that approximates inversion symmetry in the non-centrosymmetric enantiomorphous space group P1.

Graphical Abstract

The molecular structures of achiral 2-chloro-4-nitropyridine and 5-chloro-2-nitropyridine have been studied by X-ray diffraction revealing that they crystallize as polar materials. The structures have different packing motifs based on similar intermolecular interactions consisting of π-stacked molecular sheets formed by chlorine–oxygen contacts and C–H⋯X (X = O, N) interactions.

Keywords

Small molecule crystal structures Molecular structure Intermolecular interactions π-Stacking Polar crystals Non-centrosymmetric space group 

Notes

Acknowledgements

The authors thank Vassar College for supporting this work and gratefully acknowledge support for the X-ray diffraction and NMR facilities at Vassar College from the National Science Foundation under Grant Nos. 0521237 and 1526982, respectively. Thanks to Dr. Karen Wovkulich for instrumentation support and a reviewer for generous and helpful comments. Alexander Preneta is acknowledged for providing some spectroscopic data on (1).

References

  1. 1.
    Sheldrick GM (2015) Acta Crystallogr A 71:3–8CrossRefGoogle Scholar
  2. 2.
    Sheldrick GM (2015) Acta Crystallogr C 71:3–8CrossRefGoogle Scholar
  3. 3.
    Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) J Appl Crystallogr 41:466–470CrossRefGoogle Scholar
  4. 4.
    Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42:339–341CrossRefGoogle Scholar
  5. 5.
    Parsons S, Flack HD, Wagner T (2013). Acta Crystallogr B69:249–259Google Scholar
  6. 6.
    Sasaki T, Ida Y, Hisaki I, Tsuzuki S, Tohnai N, Coquerel G, Sato H, Miyata M (2016) Cryst Growth Des 16:1626–1635CrossRefGoogle Scholar
  7. 7.
    Pidcock E (2005) Chem Commun 27:3457–3459CrossRefGoogle Scholar
  8. 8.
    Tsunekawa T, Goto T, Egawa K (1987) Pyridine-based organic nonlinear optical materials. Jpn Kokai Tokkyo Koho JP 62272231:A 19871126Google Scholar
  9. 9.
    Dumur F, Dumas E, Mayer CR (2007) Targets in heterocyclic systems, vol 11. Italian Society of Chemistry, Rome, pp. 70–103Google Scholar
  10. 10.
    Spitzner D (2005) Science of synthesis, vol 15. Thieme, Stuttgart, pp 11–284Google Scholar
  11. 11.
    Scriven EFV (1984) Comprehensive heterocyclic chemistry, vol 2. Pergamon, New York, pp 165–314CrossRefGoogle Scholar
  12. 12.
    Sherman AR, Murugan R (2015) Adv Heterocycl Chem 114:227–269CrossRefGoogle Scholar
  13. 13.
    Ng SW (2010) Acta Crystallogr E 66:o1020CrossRefGoogle Scholar
  14. 14.
    Ng SW (2010) Acta Crystallogr E 66:o848CrossRefGoogle Scholar
  15. 15.
    Jankowiak A, Kaszynski P (2009) J Org Chem 74:7441–7448CrossRefGoogle Scholar
  16. 16.
    Talik Z, Talik T (1962) Rocz Chem 36:417–422Google Scholar
  17. 17.
    Talik T, Talik Z (1962) Rocz Chem 36:539–544Google Scholar
  18. 18.
    Bystritskaya MG, Kirsanov AV (1940) Zh Obshch Khim 10:1101–1107Google Scholar
  19. 19.
    Gan Z, Hu B, Song Q, Xu Y (2012) Synthesis 44:1074–1078CrossRefGoogle Scholar
  20. 20.
    Rybalova TV, Sedova VF, Gatilov YV, Shkurko OP (1998) Khim Geterotsikl Soedin 10:1367Google Scholar
  21. 21.
    Vasylyeva V, Hofmann DWM, Merz K (2016) Struct Chem 27:331–339CrossRefGoogle Scholar
  22. 22.
    Mootz D, Wussow HG (1981) J Chem Phys 75:1517–1522CrossRefGoogle Scholar
  23. 23.
    Montgomery MJ, O’Connor TJ, Tanski JM (2015) Acta Crystallogr E71:852–856Google Scholar
  24. 24.
    Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, LondonGoogle Scholar
  25. 25.
    Lueckheide M, Rothman N, Ko B, Tanski JM (2013) Polyhedron 58:79–84CrossRefGoogle Scholar
  26. 26.
    Hunter CA, Saunders JKM (1990) J Am Chem Soc 112:5525–5534CrossRefGoogle Scholar
  27. 27.
    Bondi A (1964) J Phys Chem 68:441–451CrossRefGoogle Scholar
  28. 28.
    Spek AL (2009) Acta Crystallogr D65:148–155Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryVassar CollegePoughkeepsieUSA

Personalised recommendations