Advertisement

Journal of Chemical Crystallography

, Volume 48, Issue 3, pp 103–108 | Cite as

Ba3Na(OH)3(CO3)2: A Non-centrosymmetric Hydroxycarbonate Crystallized Using the Hydroflux Method

  • Karl D. zur Loye
  • Allison M. Latshaw
  • Mark D. Smith
  • Hans-Conrad zur Loye
Original Paper

Abstract

Single crystals of Ba3Na(OH)3(CO3)2 were grown using the hydroflux method and characterized by single crystal X-ray diffraction. Ba3Na(OH)3(CO3)2 crystallizes in the hexagonal, non-centrosymmetric space group P63cm with a = 9.31360(10) Å and c = 6.2218(2) Å. The material exhibits a three-dimensional crystal structure consisting of chains of face-sharing Na(OH)6 octahedra that are hydrogen bonded to carbonate anions; the charge balance is maintained by barium atoms connected to the trigonal planar carbonate groups and surrounding the Na(OH)6 chains.

Graphical Abstract

The synthesis and crystal structure of the non-centrosymmetric hydroxycarbonate, Ba3Na(OH)3(CO3)2, is reported.

Keywords

Crystal growth Crystal structure Hydroflux Ba3Na(OH)3(CO3)2 Non-centrosymmetric 

Notes

Acknowledgements

Research supported by the U.S. National Science Foundation through Grant DMR-1301757.

References

  1. 1.
    Bugaris DE, zur Loye H-C (2012) Angew Chem Int Ed 51:3780–3811CrossRefGoogle Scholar
  2. 2.
    Mugavero III SJ, Gemmill WR, Roof IP, zur Loye H-C (2009) J Solid State Chem 182:1950–1963CrossRefGoogle Scholar
  3. 3.
    Chance WM, Bugaris DE, Sefat AS, zur Loye H-C (2013) Inorg Chem 52:11723–11733CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bugaris DE, Smith MD, zur Loye H-C (2013) Inorg Chem 52:3836–3844CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Latshaw AM, Chance WM, Trenor N, Morrison G, Smith MD, Yeon J, zur Loye H-C (2015) CrystEngComm 17:4691–4698CrossRefGoogle Scholar
  6. 6.
    Stoilova D, Koleva V, Vassileva V (2002) Spectrochim Acta A 58:2015CrossRefGoogle Scholar
  7. 7.
    Alwan AK, Thomas JH, Williams PA (1980) Trans Metal Chem 76:51–53Google Scholar
  8. 8.
    Del Arco M, Trujillano R, Rives V (1998) J Mater Chem 8:761–767CrossRefGoogle Scholar
  9. 9.
    Stoilova D, Koleva V, Vassileva V (2002) Spectrochim Acta A 58:2051CrossRefGoogle Scholar
  10. 10.
    Kang J, Lee C, Kremer RK, Whangbo M-H (2009) J Phys Cond Mater 21:392201CrossRefGoogle Scholar
  11. 11.
    Song J-L, Cui J-Q, Wu C, Yang G, Zhang C (2016) Inorg Chim Acta 444:217–220CrossRefGoogle Scholar
  12. 12.
    Frost RL, López A, Scholz R, Sampaio NP, De Oliveira FAN (2015) Spectrochim Acta A 136:918–923CrossRefGoogle Scholar
  13. 13.
    Guo Z, Du F, Li G, Cui Z (2006) Inorg Chem 45:4167–4169CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sorbello C, Jobbágy M (2017) Cryst Growth Des 17:5660–5666CrossRefGoogle Scholar
  15. 15.
    Belokoneva EL, Al’-Ama AG, Dimitrova OV, Kurazhkovskaya VS, Stefanovich SY (2002) Crystallog Rep 47:217–222CrossRefGoogle Scholar
  16. 16.
    SMART Version 5.631, SAINT + Version 6.45 and SADABS Version 2.10. Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin (2003)Google Scholar
  17. 17.
    Sheldrick GM (2008) Acta Cryst A64:112–122CrossRefGoogle Scholar
  18. 18.
    Hübschle CB, Sheldrick GM, Bittrich B (2011) J Appl Cryst 44:1281–1284CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaUSA

Personalised recommendations