Advertisement

Journal of Chemical Crystallography

, Volume 48, Issue 3, pp 96–102 | Cite as

Complexes of Ambidentate N,O-Donor Ligands with Rhenium(I) and -(V)

  • Annemè Boyce
  • Thomas I. A. Gerber
  • Eric C. Hosten
Original Paper

Abstract

The reaction of the potentially bidentate ambidentate N,O-donor ligands 3-hydroxy-2-pyridinecarboxylic acid (Hhpc) and 3-hydroxy-2-(hydroxymethyl)pyridine (Hhhp) with trans-[ReOCl3(PPh3)2] led to the isolation of the products [ReOCl(hpc)2] (1) (from acetonitrile) and [ReOCl2(hhp)(PPh3)] (2) (from ethanol) respectively. In both complexes hpc and hhp are coordinated as bidentate N,O-donor chelates, rather than as O,O-donor ligands. From the reaction of [Re(CO)5Cl] and Hhhp·HCl in ethanol the neutral complex fac-[Re(CO)3Cl(Hhhp)] (3) was obtained, with N,O-coordination of Hhhp. Complex 1 crystallizes in the monoclinic space group P21/n with a = 6.8782(3), b = 20.0647(8), c = 10.8692(4) Å, β = 107.545(1)°, and Z = 4. Complex 2 crystallizes in the triclinic space group P-1 with a = 7.3523(4), b = 8.1047(5), c = 19.591(1) Å, α = 91.133(2)°, β = 93.656(2)°, γ = 93.074(2)° and Z = 2. Complex 3 has monoclinic P21/c symmetry with the cell parameters a = 10.6452(5), b = 11.1372(5), c = 9.7229(5) Å, β = 106.107(2)°, and Z = 4.

Graphical Abstract

The reaction of the potentially bidentate ambidentate N,O-donor ligands 3-hydroxy-2-pyridinecarboxylic acid (Hhpc) and 3-hydroxy-2-(hydroxymethyl)pyridine (Hhhp) with trans-[ReOCl3(PPh3)2] led to the isolation of the products [ReOCl(hpc)2] (from acetonitrile) and [ReOCl2(hhp)(PPh3)] (from ethanol) respectively. In both complexes hpc and hhp are coordinated as bidentate N,O-donor chelates, rather than as O,O-donor ligands. From the reaction of [Re(CO)5Cl] and Hhhp·HCl in ethanol the neutral complex fac-[Re(CO)3Cl(Hhhp)] was obtained, with N,O-coordination of Hhhp. Spectroscopic data and the X-ray crystal structures of the complexes are reported.

Keywords

Bidentate Ambidentate Rhenium(V) Crystal structures 

Notes

Funding

The funding was provided by Nelson Mandela Metropolitan University.

Supplementary material

10870_2018_715_MOESM1_ESM.pdf (121 kb)
Supplementary material 1 (PDF 120 KB)
10870_2018_715_MOESM2_ESM.pdf (145 kb)
Supplementary material 2 (PDF 144 KB)
10870_2018_715_MOESM3_ESM.pdf (101 kb)
Supplementary material 3 (PDF 101 KB)

References

  1. 1.
    Alberto R (2004) In: McCleverty JA, Meyer TJ (eds) Comprehensive coordination chemistry II, vol 5. Elsevier, Oxford, pp 127–136Google Scholar
  2. 2.
    Abram A, Alberto R (2006) J Braz Chem Soc 17(8):1486–1500CrossRefGoogle Scholar
  3. 3.
    Machura B, Wolf M, Kusz J, Kruszynski R (2009) Polyhedron 28:2949–2964;CrossRefGoogle Scholar
  4. 4.
    Booysen IN, Gerber TIA, Mayer P (2010) Inorg Chim Acta 363:1292–1296CrossRefGoogle Scholar
  5. 5.
    Booysen IN, Ismail M, Gerber TIA, Akerman M, Van Brecht B (2012) S Afr J Chem 65:174–177Google Scholar
  6. 6.
    Schubiger PA, Alberto R, Smith A (1996) Bioconjug Chem 7:165–179CrossRefGoogle Scholar
  7. 7.
    Volkert WA, Hoffman TJ (1999) Chem Rev 99:2269–2292CrossRefGoogle Scholar
  8. 8.
    Johnson NP, Lock CJL, Wilkinson G (1967) Inorg Synth 9:145–148Google Scholar
  9. 9.
    APEX2, SADABS and SAINT, Bruker AXS Inc. (2010) Madison, WisconsinGoogle Scholar
  10. 10.
    Sheldrick GM (2008) Acta Crystallogr A64:112–122CrossRefGoogle Scholar
  11. 11.
    Hübschle CB, Sheldrick GM, Dittrich B (2011) J Appl Crystallogr 44:1281–1284CrossRefGoogle Scholar
  12. 12.
    Jengo E, Zangrando E, Mestroni S, Fronzoni G, Stener M, Alessio E (2001) J Chem Soc Dalton Trans 2001:1338–1346Google Scholar
  13. 13.
    Gerber TIA, Hosten E, Tshentu ZR, Mayer P (2003) J Coord Chem 56:1093–1103CrossRefGoogle Scholar
  14. 14.
    Gerber TIA, Mayer P, Tshentu ZR (2005) J Coord Chem 58:1271–1277CrossRefGoogle Scholar
  15. 15.
    Mazzi U, Roncari E, Rossi R, Bertolasi V, Traverso O, Magon L (1980) Transit Met Chem 5:289–293CrossRefGoogle Scholar
  16. 16.
    Bandoli G, Gerber TIA, Perils J, du Preez JGH (1998) Inorg Chim Acta 278:96–100CrossRefGoogle Scholar
  17. 17.
    Chen X, Femia FJ, Babich JW, Zubieta J (2000) Inorg Chim Acta 308:80–90CrossRefGoogle Scholar
  18. 18.
    Melián C, Kremer C, Suescun L, Mombrú A, Mariezcurrena R, Kremer E (2000) Inorg Chim Acta 306:70–77CrossRefGoogle Scholar
  19. 19.
    Bandoli G, Gatto S, Gerber TIA, Perils J, du Preez JGH (1996) J Coord Chem 39:299–311CrossRefGoogle Scholar
  20. 20.
    Gerber TIA, Luzipo D, Mayer P (2004) Inorg Chim Acta 357:429–435CrossRefGoogle Scholar
  21. 21.
    Allen FH (2002) Acta Crystallogr Sect B 58:380–388CrossRefGoogle Scholar
  22. 22.
    Sachse A, Mösch-Zanetti NC, Lyashenko G, Wielandt JW, Most K, Magull J, Dall`Antonia F, Pal A, Herbst-Irmer R (2007) Inorg Chem 46:7129–7135CrossRefGoogle Scholar
  23. 23.
    Machura B, Kruszynski R, Kusz J (2008) Polyhedron 27:1679–1689CrossRefGoogle Scholar
  24. 24.
    Machura B, Kusz J (2008) Polyhedron 27:366–374CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Annemè Boyce
    • 1
  • Thomas I. A. Gerber
    • 1
  • Eric C. Hosten
    • 1
  1. 1.Department of ChemistryNelson Mandela Metropolitan UniversityPort ElizabethSouth Africa

Personalised recommendations