Utilizing an In Situ Reduction in the Synthesis of BaMoOF5

  • Justin B. Felder
  • Mark D. Smith
  • Hans-Conrad zur LoyeEmail author
Original Paper


A new molybdenum containing oxyfluoride, BaMoOF5, space group Cmcm with lattice parameters of a = 7.1445(3), b = 6.7894(3), c = 10.1969(4), was synthesized via a mild hydrothermal crystal growth method. The synthesis resulted in high-quality single crystals of the title material, which were characterized by single-crystal X-ray diffraction. The structure is discussed in detail.

Graphical Abstract

A new Mo(V) oxyfluoride, BaMoOF5, was synthesized via a mild hydrothermal route that included an in-situ reduction step to reduce molybdenum from a starting oxidation state of 6+ to 5+.


Mild hydrothermal Crystal growth In situ reduction 



We gratefully acknowledge financial support from the United States Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Award number DE-SC0018739 funded this work.


The funding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10870_2018_767_MOESM1_ESM.pdf (82 kb)
Supplemental Information: The CIF for the reported composition has been deposited in both the ICSD: Number Pending and the CCDC: 1588566. (PDF 82 KB)


  1. 1.
    Boivin E, Masquelier C, Croguennec L, Chotard JN (2017) Crystal structure and lithium diffusion pathways of a potential positive electrode material for lithium-ion batteries: Li2VIII(H0.5PO4)2. Inorg Chem 56:6776–6779CrossRefGoogle Scholar
  2. 2.
    Fulle K, Sanjeewa LD, McMillen CD, Wen Y, Rajamanthrilage AC, Anker JN, Chumanov G, Kolis JW (2017) One-pot hydrothermal synthesis of TbIII13(GeO4)6O7(OH) and K2TbIVGe2O7: preparation of a stable terbium(4+) complex. Inorg Chem 56:6044–6047CrossRefGoogle Scholar
  3. 3.
    Hamchaoui F, Alonzo V, Marlart I, Auguste S, Galven C, Rebbah H, Le Fur E (2017) Hydrothermal synthesis, structural and thermal characterizations of three open-framework gallium phosphites. J Solid State Chem 255:8–12CrossRefGoogle Scholar
  4. 4.
    Shen C, Mei D, Sun C, Liu Y, Wu Y (2017) Hydrothermal synthesis and crystal structures of NaBe(SeO)·H2O and Cs[Mg(H2O)](SeO). Z Anorg Allg Chem 643:1082–1087CrossRefGoogle Scholar
  5. 5.
    Zaitseva NA, Krasnenko TI, Onufrieva TA, Samigullina RF (2017) Hydrothermal synthesis and microstructure of α-Zn2SiO4:V crystal phosphor. Russ J Inorg Chem 62:168–171CrossRefGoogle Scholar
  6. 6.
    Cui M, He Z, Tang Y, Qiu C (2017) Crystal growth and magnetic properties of a kagomé compound Cs2NaMn3F12. J Cryst Growth 475:256–260CrossRefGoogle Scholar
  7. 7.
    He L, Yuan H, Huang K, Yan C, Li G, He Q, Yu Y, Feng S (2009) Hydrothermal syntheses, structures, and magnetic properties of (NH4)2NaVF6 and Na3VF6. J Solid State Chem 182:2208–2212CrossRefGoogle Scholar
  8. 8.
    Jo V, Woo Lee D, Koo HJ, Ok KM (2011) A2TiF5·nH2O (A = K, Rb, or Cs; n = 0 or 1): synthesis, structure, characterization, and calculations of three new uni-dimensional titanium fluorides. J Solid State Chem 184:741–746CrossRefGoogle Scholar
  9. 9.
    Liu L, Yang Y, Dong X, Zhang B, Wang Y, Yang Z, Pan S (2016) Design and syntheses of three novel carbonate halides: Cs3Pb2(CO3)3I, KBa2(CO3)2F, and RbBa2(CO3)2F. Chem Eur J 22:2944–2954CrossRefGoogle Scholar
  10. 10.
    Yeon J, zur Loye HC (2017) Hydrothermal synthesis and crystal structure of hexafluorogallate, Na3GaF6. J Chem Crystallogr 47:129–132CrossRefGoogle Scholar
  11. 11.
    Ay B, Yildiz E, Felts AC, Abboud KA (2016) Hydrothermal synthesis, structure, heterogeneous catalytic activity and photoluminescent properties of a novel homoleptic Sm(III)-organic framework. J Solid State Chem 244:61–68CrossRefGoogle Scholar
  12. 12.
    Hmida F, Ayed B, Haddad A (2017) Hydrothermal synthesis and characterization of two novel inorganic-organic hybrid materials based on polyoxotungstate clusters: Na(C5H7N2O)4 [HP2W18O62].10.33H2O and (C6H8NO)4[H2P2W18O62]·6H2O. J Mol Struct 1150:566–573CrossRefGoogle Scholar
  13. 13.
    Marinho MV, Reis DO, Oliveira WX, Marques LF, Stumpf HO, Déniz M, Pasán J, Ruiz-Pérez C, Cano J, Lloret F, Julve M (2017) Photoluminescent and slow magnetic relaxation studies on lanthanide(III)-2,5-pyrazinedicarboxylate frameworks. Inorg Chem 56:2108–2123CrossRefGoogle Scholar
  14. 14.
    Xie YC, Cheng QR, Pan ZQ (2018) Hydrothermal synthesis and crystal structure of alkaline earth metal (Mg, Ca) based on 2,5-dimethylbenzene-1,4-diylbis(methylene) diphosphonic acid. J Mol Struct 1154:232–238CrossRefGoogle Scholar
  15. 15.
    Zhao EX, Li FF, Shi ZZ, Zhang R,H, Zhao D (2017) A new zinc complex based on 5-bromoisophthalic acid and 1,2-bis(imidazole-1-yl)ethane: hydrothermal synthesis, crystal structure, and properties. Inorg Nano Met Chem 47:1175–1178CrossRefGoogle Scholar
  16. 16.
    Łyszczek R, Głuchowska H, Cristóvão B, Tarasiuk B (2016) New lanthanide biphenyl-4,4′-diacetates—hydrothermal synthesis, spectroscopic, magnetic and thermal investigations. Thermochim Acta 645:16–23CrossRefGoogle Scholar
  17. 17.
    Lin ZJ, Zheng HQ, Zheng HY, Lin LP, Xin Q, Cao R (2017) Efficient capture and effective sensing of Cr2O7 2– from water using a zirconium metal-organic framework. Inorg Chem 56:14178–14188CrossRefGoogle Scholar
  18. 18.
    Lu BB, Yang J, Liu YY, Ma JF (2017) A polyoxovanadate-resorcin[4]arene-based porous metal-organic framework as an efficient multifunctional catalyst for the cycloaddition of CO2 with epoxides and the selective oxidation of sulfides. Inorg Chem 56:11710–11720CrossRefGoogle Scholar
  19. 19.
    Park HJ, Jang JK, Kim SY, Ha JW, Moon D, Kang IN, Bae YS, Kim S, Hwang DH (2017) Synthesis of a Zr-based metal-organic framework with Spirobifluorenetetrabenzoic acid for the effective removal of nerve agent simulants. Inorg Chem 56:12098–12101CrossRefGoogle Scholar
  20. 20.
    Thao Tran T, Halasyamani SP (2014) Synthesis and characterization of ASnF3 (A = Na+, K+, Rb+, Cs+). J Solid State Chem 210:213–218CrossRefGoogle Scholar
  21. 21.
    Abeysinghe D, Smith MD, Yeon J, Morrison G, zur Loye HC (2014) Observation of multiple crystal-to-crystal transitions in a new reduced vanadium oxalate hybrid material, Ba [Ba3(VO)2(C2O4)5(H2O)6](H2O)3, prepared via a mild, two-step hydrothermal method. Cryst Growth Des 14:4749–4758CrossRefGoogle Scholar
  22. 22.
    Felder JB, Yeon J, Smith MD, zur Loye HC (2016) Compositional and structural versatility in an unusual family of anti-perovskite fluorides: [Cu(H2O)4]3[(MF6)(M’F6)]. Inorg Chem 55:7167–7175CrossRefGoogle Scholar
  23. 23.
    Yeon J, Smith MD, Tapp J, Möller A, zur Loye HC (2014) Application of a mild hydrothermal approach containing an in situ reduction step to the growth of single crystals of the quaternary U(IV)-containing fluorides Na4MU6F30 (M = Mn2+, Co2+, Ni2++, Cu2++, and Zn2+) crystal growth, structures, and magnetic properties. J Am Chem Soc 136:3955–3963CrossRefGoogle Scholar
  24. 24.
    Mann JM, McMillen CD, Kolis JW (2015) Crystal chemistry of alkali thorium silicates under hydrothermal conditions. Cryst Growth Des 15:2643–2651CrossRefGoogle Scholar
  25. 25.
    McMillen CD, Kolis JW (2008) Hydrothermal single crystal growth of Sc2O3 and lanthanide-doped Sc2O3. J Cryst Growth 310:1939–1942CrossRefGoogle Scholar
  26. 26.
    Underwood CC, McMillen CD, Kolis JW (2014) Hydrothermal synthesis and crystal chemistry of novel fluorides with A7B6F31 (A = Na, K, NH4, Tl; B = Ce, Th) compositions. J Chem Crystallogr 44:493–500CrossRefGoogle Scholar
  27. 27.
    Page B (2011) Immobilising radioactive waste. Mater World 19:28Google Scholar
  28. 28.
    Prado MO, Messi NB, Plivelic TS, Torriani IL, Bevilacqua AM, Arribere MA (2001) The effects of radiation on the density of an aluminoborate glass. J Non-Cryst Solids 289:175CrossRefGoogle Scholar
  29. 29.
    Schweiger MJ, Hrma P, Humrickhouse CJ, Marcial J, Riley BJ, TeGrotenhuis NE (2010) Cluster formation of silica particles in glass batches during melting. J Non-Cryst Solids 356:1359–1367CrossRefGoogle Scholar
  30. 30.
    Xu K, Hrma P, Rice JA, Schweiger MJ, Riley BJ, Overman NR, Kruger AA (2016) Conversion of nuclear waste to molten glass: cold-cap reactions in crucible tests. J Am Ceram Soc 99:2964–2970CrossRefGoogle Scholar
  31. 31.
    Short RJ, Hand RJ, Hyatt NC, Möbus G (2005) Environment and oxidation state of molybdenum in simulated high level nuclear waste glass compositions. J Nucl Mater 340:179–186CrossRefGoogle Scholar
  32. 32.
    Hand RJ, Short RJ, Morgan S, Hyatt NC, Mobus G, Lee WE (2005) Molybdenum in glasses containing vitrified nuclear waste. Glass Technol 46:121Google Scholar
  33. 33.
    Krause L, Herbst-Irmer R, Sheldrick GM, Stalke D (2008) Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J Appl Cryst 48:3–10CrossRefGoogle Scholar
  34. 34.
    Sheldrick GM (2008) A short history of SHELX. Acta Cryst A 64:112–122CrossRefGoogle Scholar
  35. 35.
    Hubschle CB, Sheldrick GM, Bittrich B (1987) ShelXle: a Qt graphical user interface for SHELXL. J Appl Cryst 20:139CrossRefGoogle Scholar
  36. 36.
    Gelato LM, Parthe E (1987) STRUCTURE TIDY—a computer program to standardize crystal structure data. J Appl Cryst 20:139CrossRefGoogle Scholar
  37. 37.
    Parthe E (2004) Inorganic crystal structure data to be presented in a form more useful for further studies. Chin J Struct Chem 23:1150Google Scholar
  38. 38.
    Parthe E, Gelato LM (1984) The standardization of inorganic crystal-structure data. Acta Cryst A 40:169CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaUSA

Personalised recommendations