Journal of Chemical Crystallography

, Volume 47, Issue 6, pp 226–232 | Cite as

Structural and IR-Spectroscopic Characterization of Aqua Lithium Acesulfamate, an Outlier of the M(ace), M: Na+, K+, Rb+, Cs+, Isomorphic Series

  • Oscar E. Piro
  • Gustavo A. Echeverría
  • Beatriz S. Parajón-Costa
  • Enrique J. BaranEmail author
Original Paper


The crystal structure of aqua lithium 6-methyl-1,2,3,-oxathiazine-4(3H)-one, 2.2-dioxide, for short Li(ace)H2O, was determined by X-ray diffraction methods. It crystallizes in the triclinic P\(\overline {1}\) space group with a = 6.1750(9) Å, b = 7.3969(9) Å, c = 9.016(1) Å, α = 105.88(1)°, β = 94.59(1)°, γ = 97.80(1)°, and Z = 2 molecules per unit cell. The crystal structure of Li(ace)H2O sharply departs from the other heavier alkaline-metal acesulfamates, namely the monoclinic isotypic M-ace (M from Na+ to Cs+) family of salts. Lithium is in a distorted LiO4 tetrahedral coordination with acesulfamate carbonyl, sulfoxide and water oxygen atoms. The FTIR spectrum of the new compound was also recorded and is briefly discussed. Some comparisons with other simple acesulfamate salts are also made.

Graphical Abstract

The synthesis of aqua lithium acesulfamate, Li(C4H4NO4S)H2O, and its structural characterization by single-crystal X-ray diffractometry are reported. The FTIR spectrum of the salt is analyzed by comparison with data of related compounds.


Aqua lithium acesulfamate Synthesis Crystal structure FTIR spectrum 



This work was supported by CONICET (PIP 11220130100651CO) and UNLP (Projects 11/X673 and 11/X709) of Argentina. OEP, GAE and BSP-C are Research Fellows of CONICET.


  1. 1.
    Ager DJ, Pantaleone DP, Henderson SA, Katritzky AR, Prakash J, Walters DE (1998) Commercial synthetic nonnutritive sweeteners. Angew Chem Int Edit 37:869–876CrossRefGoogle Scholar
  2. 2.
    Kroger M, Meister K, Kava R (2006) Low-calorie sweeteners and other sugar substitutes: a review of the safety issues. Compr Rev Food Sci Food Saf 5:35–47CrossRefGoogle Scholar
  3. 3.
    Clauss K, Jensen H (1973) Oxathiazinone dioxides: a new group of sweetening agents. Angew Chem Int Edit 12:869–876CrossRefGoogle Scholar
  4. 4.
    Mayer DG, Kemper FH (eds) (1991) Acesulfame-K. Marcel Dekker, New YorkGoogle Scholar
  5. 5.
    Paulus EF (1975) 6-Methyl-1,2,3-oxathiazin-4(3K)-on-2,2-dioxid. Acta Crystallogr B31:1191–1193CrossRefGoogle Scholar
  6. 6.
    Baran EJ, Yilmaz V (2006) Metal complexes of saccharin. Coord Chem Rev 250:1980–1999CrossRefGoogle Scholar
  7. 7.
    Icbudak H, Adiyaman E, Uyanik A, Çakir S (2007) Synthesis, characterization and chromotropic properties of MnII, CoII, NiII and CuII with bis(acesulfamato)bis(3-methylpyridine) complexes. Transit Met Chem 32:864–869CrossRefGoogle Scholar
  8. 8.
    Demirtas G, Dege N, Icbudak H, Yurdakul O, Büyükgüngör O (2012) Experimental and DFT studies on poly [d-µ3-acesulfamato-O,O:O’,O’:O,O-di-µ-acesulfamato-O–O,N-di-µ-aqua-dicalcium(II)] complex. J Inorg Orgnomet Polym Mater 22:671–679CrossRefGoogle Scholar
  9. 9.
    Piro OE, Echeverría GA, Parajón-Costa BS, Baran EJ (2014) Synthesis and characterization of ammonium acesulfamate. Z Naturforsch 69b:737–741Google Scholar
  10. 10.
    Piro OE, Echeverría GA, Parajón-Costa BS, Baran EJ (2015) Structural and spectroscopic characterization of isotypic sodium, rubidium and cesium acesulfamates. Z Naturforsch 70b:491–496Google Scholar
  11. 11.
    Baran EJ, Parajón-Costa BS, Echeverría GA, Piro OE (2015) Synthesis, structural and spectroscopic characterization of thallium(I) acesulfamate. Maced J Chem Chem Eng 34:95–100CrossRefGoogle Scholar
  12. 12.
    Icbudak H, Demirtas G, Dege N (2015) Experimental and theoretical (DFT) studies on poly [octa-µ3-acesulfamato-O,O:N,O’:O’,N:O,O-tetraaquabarium(II)] and poly [octa-µ3-acesulfamato-O,O:N,O’:O’,N:O,O-tetraaquastrontium(II)] complexes. Maced J Chem Chem Eng 34:105–114CrossRefGoogle Scholar
  13. 13.
    Piro OE, Echeverría GA, Parajón-Costa BS, Baran EJ (2016) Structural and IR-spectroscopic characterization of magnesium acesulfamate. Z Naturforsch 71b:51–55Google Scholar
  14. 14.
    Deberitz J, Boche G (2003) Lithium und seine Verbindungen. Chem unserer Zeit 37:258–266CrossRefGoogle Scholar
  15. 15.
    Tarascon JM (2010) Is lithium the new gold? Nat Chem 2:510CrossRefGoogle Scholar
  16. 16.
    Baran EJ (ed) (2017) Litio. Un recurso natural estratégico. Academia Nacional de Ciencias Exactas, Físicas y Naturales, Buenos AiresGoogle Scholar
  17. 17.
    Velaga SP, Vangala BP, Basavoju S, Boström D (2010) Polymorphism in acesulfame sweetener: structure-property and stability relationships of bending and brittle crystals. Chem Commun 46:3562–3564CrossRefGoogle Scholar
  18. 18.
    CrysAlisPro Software System (2009). Version (release 15-09-2009-CrysAlis 171.NET), Oxford Diffraction Ltd., Abingdon, OxfordGoogle Scholar
  19. 19.
    Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122CrossRefGoogle Scholar
  20. 20.
    Farrugia LJ (1997) ORTEP-3 for Windows: a version of ORTEP-III with a graphical user interface (GUI). J Appl Crystallogr 30:565CrossRefGoogle Scholar
  21. 21.
    Bach I, Kumberger H, Schmidbaur H (1990) Orotate complexes. Synthesis and crystal structure of lithium orotate (−) monohydrate and magnesium bis [orotate (−)] octahydrate. Chem Ber 123:2267–2671CrossRefGoogle Scholar
  22. 22.
    Tobón-Zapata GE, Piro OE, Etcheverry SB, Baran EJ (1998) Crystal structure and IR-spectrum of lithium citrate monohydrate, Li(C6H7O7)·H2O. Z Anorg Allg Chem 624:721–724CrossRefGoogle Scholar
  23. 23.
    Wagner CC, Baran EJ, Piro OE, Castellano EE (1999) A new potentially useful complex for lithium therapies: dimeric monoaqua lithium isoorotate. J Inorg Biochem 77:209–213CrossRefGoogle Scholar
  24. 24.
    Mingos DMP (1998) Essential trends in inorganic chemistry. Oxford University Press, OxfordGoogle Scholar
  25. 25.
    Yvon K, Jeitschko W, Parthe E (1977) LAZY PULVERIX, a computer program for calculating X-ray and neutron diffraction powder patterns. J Appl Crystallogr 10:73–74CrossRefGoogle Scholar
  26. 26.
    Popova AD, Velcheva EA, Stamboliyska BA (2012) DFT and experimental study on the IR spectra and structure of acesulfame sweetener. J Mol Struct 1009:23–29CrossRefGoogle Scholar
  27. 27.
    Siebert H (1966) Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie. Springer, BerlinCrossRefGoogle Scholar
  28. 28.
    Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H⋯O hydrogen bond lengths in minerals. Monatsh Chem 130:1047–1059Google Scholar
  29. 29.
    Smith B (1999) Infrared spectral interpretation. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Oscar E. Piro
    • 1
  • Gustavo A. Echeverría
    • 1
  • Beatriz S. Parajón-Costa
    • 2
  • Enrique J. Baran
    • 2
    Email author
  1. 1.Departamento de Física and Instituto IFLP (CONICET- CCT-La Plata), Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  2. 2.Centro de Química Inorgánica (CEQUINOR/CONICET- CCT-La Plata, UNLP), Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations