Journal of Chemical Crystallography

, Volume 45, Issue 4, pp 178–188 | Cite as

Zinc-Formate Metal–Organic Frameworks: Watch Out for Reactive Solvents

  • Sílvia Quaresma
  • Vânia André
  • Marta Martins
  • M. Teresa Duarte
Original Paper


Three different formate-based metal–organic frameworks, [Zn(HCOO) 2 (Bip)], [H 2 N(CH 3 ) 2 ][Zn(HCOO) 3 ] and [Zn 2 (HCOO) 4 (H 2 O) 4 ], were obtained under solvothermal conditions in DMF. [Zn(HCOO) 2 (Bip)] is based on two ligands (formate and 4,4'-bipyridine), while [H 2 N(CH 3 ) 2 ][Zn(HCOO) 3 ] and [Zn 2 (HCOO) 4 (H 2 O) 4 ] only contain the formate ligand. The structural characterization of these compounds shows specific features for each of these networks. Importantly, the work presented herein proves that the formate is a result of DMF decomposition under the acidic solvothermal conditions used, a very relevant point that should be considered when planning solvothermal synthesis of MOFs with organic acids, such as azelaic acid.

Graphical Abstract

Three different formate-based metal–organic frameworks were obtained under solvothermal conditions in DMF. Structural characterization of these compounds shows specific features for each of these networks. The formate is a result of DMF decomposition under the acidic solvothermal conditions used.


Dimethylformamide Metal–organic frameworks Structural elucidation 



Authors acknowledge funding to Fundação para a Ciência e a Tecnologia (PTDC/CTM-BPC/122447/2010, PEST-OE/QUI/UI0100/2013, RECI/QEQ-QIN70189/2012 and SFRH/BPD/78854/2011).


  1. 1.
    Janiak C, Vieth JK (2010) MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J Chem 34(11):2366–2388CrossRefGoogle Scholar
  2. 2.
    Notash B, Safari N, Khavasi HR (2012) Anion-controlled structural motif in one-dimensional coordination networks via cooperative weak noncovalent interactions. CrystEngComm 14(20):6788–6796CrossRefGoogle Scholar
  3. 3.
    Keskin S, Kizilel S (2011) Biomedical applications of metal organic frameworks. Ind Eng Chem Res 50(4):1799–1812CrossRefGoogle Scholar
  4. 4.
    Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Ferey G, Morris RE, Serre C (2012) Metal-organic frameworks in biomedicine. Chem Rev 112(2):1232–1268CrossRefGoogle Scholar
  5. 5.
    Ferey G, Serre C (2009) Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem Soc Rev 38(5):1380–1399CrossRefGoogle Scholar
  6. 6.
    Xiao B, Wheatley PS, Zhao X, Fletcher AJ, Fox S, Rossi AG, Megson IL, Bordiga S, Regli L, Thomas KM et al (2007) High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework. J Am Chem Soc 129(5):1203–1209CrossRefGoogle Scholar
  7. 7.
    Graetz J (2009) New approaches to hydrogen storage. Chem Soc Rev 38(1):73–82CrossRefGoogle Scholar
  8. 8.
    Mueller M, Zhang X, Wang Y, Fischer RA (2009) Nanometer-sized titania hosted inside MOF-5. Chem Commun 1:119–121CrossRefGoogle Scholar
  9. 9.
    Suh MP, Cheon YE, Lee EY (2008) Syntheses and functions of porous metallosupramolecular networks. Coord Chem Rev 252(8–9):1007–1026CrossRefGoogle Scholar
  10. 10.
    Han SS, Mendoza-Cortes JL, Goddard WA (2009) Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks. Chem Soc Rev 38(5):1460–1476CrossRefGoogle Scholar
  11. 11.
    Dueren T, Bae Y-S, Snurr RQ (2009) Using molecular simulation to characterise metal-organic frameworks for adsorption applications. Chem Soc Rev 38(5):1237–1247CrossRefGoogle Scholar
  12. 12.
    Ma S, Sun D, Ambrogio M, Fillinger JA, Parkin S, Zhou H-C (2007) Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake. J Am Chem Soc 129(7):1858–1859CrossRefGoogle Scholar
  13. 13.
    Uemura T, Ono Y, Kitagawa K, Kitagawa S (2008) Radical polymerization of vinyl monomers in porous coordination polymers: nanochannel size effects on reactivity, molecular weight, and stereostructure. Macromolecules 41(1):87–94CrossRefGoogle Scholar
  14. 14.
    Uemura T, Yanai N, Kitagawa S (2009) Polymerization reactions in porous coordination polymers. Chem Soc Rev 38(5):1228–1236CrossRefGoogle Scholar
  15. 15.
    Farrusseng D, Aguado S, Pinel C (2009) Metal-organic frameworks: opportunities for catalysis. Angew Chem Int Ed 48(41):7502–7513CrossRefGoogle Scholar
  16. 16.
    Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT (2009) Metal-organic framework materials as catalysts. Chem Soc Rev 38(5):1450–1459CrossRefGoogle Scholar
  17. 17.
    Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal-organic frameworks. Chem Soc Rev 38(5):1330–1352CrossRefGoogle Scholar
  18. 18.
    Kurmoo M (2009) Magnetic metal-organic frameworks. Chem Soc Rev 38(5):1353–1379CrossRefGoogle Scholar
  19. 19.
    Evans OR, Lin WB (2002) Crystal engineering of NLO materials based on metal-organic coordination networks. Acc Chem Res 35(7):511–522CrossRefGoogle Scholar
  20. 20.
    Horcajada P, Serre C, Vallet-Regi M, Sebban M, Taulelle F, Ferey G (2006) Metal-organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed 45(36):5974–5978CrossRefGoogle Scholar
  21. 21.
    Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regi M, Sebban M, Taulelle F, Ferey G (2008) Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc 130(21):6774–6780CrossRefGoogle Scholar
  22. 22.
    Ferey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37(1):191–214CrossRefGoogle Scholar
  23. 23.
    Millange F, Guillou N, Walton RI, Greneche J-M, Margiolaki I, Fereya G (2008) Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. Chem Comm 39:4732–4734CrossRefGoogle Scholar
  24. 24.
    Della Rocca J, Liu D, Lin W (2011) Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44(10):957–968CrossRefGoogle Scholar
  25. 25.
    Hebert R (2004) Therapeutically improved salts of azelaic acid. United States PatentGoogle Scholar
  26. 26.
    Liu RH, Smith MK, Basta SA, Farmer ER (2006) Azelaic acid in the treatment of papulopustular rosacea—a systematic review of randomized controlled trials. Arch Dermatol 142(8):1047–1052CrossRefGoogle Scholar
  27. 27.
    Caspari WA (1928) Crystallography of the aliphatic dicarboxylic acids. J Chem Soc 1928:3235–3241CrossRefGoogle Scholar
  28. 28.
    Housty J, Hospital M (1967) Structures des deux formes cristallines de l’acide azélaique COOH[CH2]7COOH. Acta Crystallogr 22:288CrossRefGoogle Scholar
  29. 29.
    Bond AD, Edwards MR, Jones W (2001) Azelaic acid. Acta Crystallogr E 57:o143–o144CrossRefGoogle Scholar
  30. 30.
    Thalladi VR, Nusse M, Boese R (2000) The melting point alternation in alpha, omega-alkanedicarboxylic acids. J Am Chem Soc 122(38):9227–9236CrossRefGoogle Scholar
  31. 31.
    Thompson LJ, Voguri RS, Male L, Tremayne M (2011) The crystal structures and melting point properties of isonicotinamide cocrystals with alkanediacids HO2C(CH2)(n-2)CO2H n = 7-9. CrystEngComm 13(12):4188–4195CrossRefGoogle Scholar
  32. 32.
    Edwards MR, Jones W, Motherwell WDS (2002) Influence of dicarboxylic acid structure on tape networks in co-crystals of 2-pyridone. Cryst Eng 5(1):25–36CrossRefGoogle Scholar
  33. 33.
    Braga D, Maini L, de Sanctis G, Rubini K, Grepioni F, Chierotti MR, Gobetto R (2003) Mechanochemical preparation of hydrogen-bonded adducts between the diamine 1,4-diazabicyclo 2.2.2 octane and dicarboxylic acids of variable chain length: an x-ray diffraction and solid-state NMR study. Chem Eur J 9(22):5538–5548CrossRefGoogle Scholar
  34. 34.
    Karki S, Friscic T, Jones W (2009) Control and interconversion of cocrystal stoichiometry in grinding: stepwise mechanism for the formation of a hydrogen-bonded cocrystal. CrystEngComm 11(3):470–481CrossRefGoogle Scholar
  35. 35.
    Aakeroy CB, Hussain I, Desper J (2006) 2-Acetaminopyridine: a highly effective cocrystallizing agent. Cryst Growth Des 6(2):474–480CrossRefGoogle Scholar
  36. 36.
    Lawniczak P, Pogorzelec-Glaser K, Pawlaczyk C, Pietraszko A, Szczesniak L (2009) New 2-methylimidazole-dicarboxylic acid molecular crystals: crystal structure and proton conductivity. J Phys Condens Matter 21(34):345403CrossRefGoogle Scholar
  37. 37.
    Braga D, Dichiarante E, Palladino G, Grepioni F, Chierotti MR, Gobetto R, Pellegrino L (2010) Remarkable reversal of melting point alternation by co-crystallization. CrystEngComm 12(11):3534–3536CrossRefGoogle Scholar
  38. 38.
    Aakeroy CB, Panikkattu SV, DeHaven B, Desper J (2012) Establishing supramolecular control over solid-state architectures: a simple mix and match strategy. Cryst Growth Des 12(5):2579–2587CrossRefGoogle Scholar
  39. 39.
    Bruker AXS (2005) SADABS bruker analytical systems. Bruker AXS Inc., MadisonGoogle Scholar
  40. 40.
    Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) SIR97: a new tool for crystal structure determination and refinement. J Appl Crystallogr 32:115–119CrossRefGoogle Scholar
  41. 41.
    Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122CrossRefGoogle Scholar
  42. 42.
    Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J Appl Cryst 32:837–838CrossRefGoogle Scholar
  43. 43.
    Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470CrossRefGoogle Scholar
  44. 44.
    Spek AL (2009) Structure validation in chemical crystallography. Acta Crystallogr D 65:148–155CrossRefGoogle Scholar
  45. 45.
    Huh HS, Lee SW (2008) Unexpected formation of the cobalt-formate coordination polymer [Co3(HCO2)6].dmf from [Co(NO3)2 and 2,2′-bipyridine-5,5′-dicarboxylic acid in dmf-EtOH-H2O. Bull Korean Chem Soc 29(12):2383–2389CrossRefGoogle Scholar
  46. 46.
    Min D, Lee SW (2002) Terbium-oxalate-pyridinedicarboxylate coordination polymers suggesting the reductive coupling of carbon dioxide (CO2) to oxolate (C2O4 2−): [Tb2 (3,5-PDC)2(H2O)4(C2O4)].2H2O and [Tb(2,4-PDC)(H2O)(C2O4)0.5] (PDC = pyridinedicarboxylate). Inorg Chem Commun. 5(11):978–983CrossRefGoogle Scholar
  47. 47.
    Yan Y, Wu CD, Lu CZ (2003) Hydrothermal synthesis of two new transition metal coordination polymers with mixed ligands. Z Anorg Allg Chem 629(11):1991–1995CrossRefGoogle Scholar
  48. 48.
    Huh HS, Lee SW (2006) Lanthanide-oxalate coordination polymers formed by reductive coupling of carbon dioxide to oxalate: [Ln2(3,5-pdc)2(C2O4)(H2O)4]·2H2O (Ln = Eu, Sm, Ho, Dy; pdc = pyridinedicarboxylate). Bull Korean Chem Soc 27(11):1839–1843CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Centro de Química Estrutural, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.CICECO, Department of ChemistryUniversidade de AveiroAveiroPortugal

Personalised recommendations