Journal of Chemical Crystallography

, Volume 44, Issue 11–12, pp 586–596 | Cite as

Experimental Electron Density of Ammonium Dihydrogen Phosphate in the Paraelectric as well as Antiferroelectric Phases by the Maximum Entropy Method

  • Rajul Ranjan Choudhury
  • R. Chitra
  • Frédéric Capet
  • Pascal Roussel
Original Paper
  • 99 Downloads

Abstract

The experimental electron density of ammonium dihydrogen phosphate (ADP) crystal in the paraelectric phase (155 K) as well as antiferroelectric phase (100 K) is obtained from its high resolution X-ray diffraction data using the maximum entropy method. Marked redistribution of electron density has been observed in ADP crystals as the crystal temperature is lowered below the phase transition temperature Tc = 148 K. The nature of very strong O–H–O hydrogen bonds between phosphate anions changes from an ideal covalent interaction to a polar covalent interaction as the temperature is altered from 155 to 100 K. The influence of intermolecular interaction like the dipolar interaction on the electron density particularly in the intermolecular region is clearly visible in the electron density maps. One of the most striking features of the electron density of ADP is the presence of non nuclear maxima (NNM) within the “ab” planes. It is argued that the appearance of these NNMs is a normal consequence of the chemical bonding between homonuclear groups in ADP.

Graphical Abstract

The manuscript describes the experimental electron density of ammonium dihydrogen phosphate (ADP) obtained from its high resolution X-ray diffraction data recorded at two crystal temperatures namely 100 and 155 K.

Keywords

Molecular electron density Maximum entropy method Hydrogen bonds 

References

  1. 1.
    Tokunaga M, Matsubara T (1966) Prog. Theo. Phys. 35:581CrossRefGoogle Scholar
  2. 2.
    Nagamiya T (1952) Prog. Theo. Phys. 7:275CrossRefGoogle Scholar
  3. 3.
    Koval S, Lasave J, Migoni RL, Kohanoff J, Dalal NS (2011) In: Mickaël Lallart (ed) Ab Initio Studies of H-Bonded Systems: The Cases of Ferroelectric KH2PO4 and Antiferroelectric NH4H2PO4, Ferroelectrics—Characterization and Modeling, InTech, ISBN: 978-953-307-455-9Google Scholar
  4. 4.
    Tenzer L, Frazer BC, Pepinsky R (1958) Acta Cryst. B11:505CrossRefGoogle Scholar
  5. 5.
    Fukami T, Akahoshi S, Hukuda K, Yagi T (1987) J Phys Soc Jpn 56:2223CrossRefGoogle Scholar
  6. 6.
    Koritsanszky TS, Coppens P (2001) Chem Rev 101:1583CrossRefGoogle Scholar
  7. 7.
    Gatti C, Bianchi R, Destro R, Merati F (1992) J. Mol. Struct. (Theochem) 255:409CrossRefGoogle Scholar
  8. 8.
    Volkov A, Abramov Y, Coppens P, Gatti C (2002) Acta Cryst A56:332Google Scholar
  9. 9.
    Netzel J, Smaalen SV (2009) Acta Cryst B65:624CrossRefGoogle Scholar
  10. 10.
    Roversi P, Destro R (2004) Chem Phys Lett 386:472CrossRefGoogle Scholar
  11. 11.
    Roversi P, Irwin JJ, Bricogne G (1998) Acta Cryst A54:971CrossRefGoogle Scholar
  12. 12.
    Smaalen SV, Netzel J (2009) Phys Scr 79:1Google Scholar
  13. 13.
    de Vries RY, Briels WJ, Feil D (1996) Phys Rev Lett 77:1719CrossRefGoogle Scholar
  14. 14.
    Peres N, Boukhris A, Souhassou M, Gavoille G, Lecomte C (1999) Acta Cryst A55:1038CrossRefGoogle Scholar
  15. 15.
    Smaalen SV, Palatinus L, Schneider M (2003) Acta Cryst. A59:459CrossRefGoogle Scholar
  16. 16.
    Petricek V, Dusek M, Palatinus L (2006) JANA2000 Institute of Physics. Praha, Czech RepublicGoogle Scholar
  17. 17.
    Netzel J, Hofmann A, Smaalen SV (2008) Cryst Eng Commun 10:335CrossRefGoogle Scholar
  18. 18.
    Bader RFW (1991) Chem Rev 91:893CrossRefGoogle Scholar
  19. 19.
    Lasave J, Koval S, Dalal NS, Migoni RL (2007) Phys Rev Lett 98:267601CrossRefGoogle Scholar
  20. 20.
    Popelier PLA (2000) Atoms in molecules: an introduction. Pearson Education Ltd, Harlow UKGoogle Scholar
  21. 21.
    Choudhury RR, Chitra R, Capet F, Roussel P (2011) J of Molecular Structure 994:44CrossRefGoogle Scholar
  22. 22.
    Iversen BB, Jensen JL, Danielsen J (1997) Acta Crystallogr. Sect. A53:376CrossRefGoogle Scholar
  23. 23.
    Pendas AM, Blanco MA, Costales A, Sanchez PM, Luana V (1999) Phys Rev Lett 83:1930CrossRefGoogle Scholar
  24. 24.
    Luana V, Mori-Sanchez P, Costales A, Blanca MA, Pendas A (2003) J Chem. Physics 119:6341CrossRefGoogle Scholar
  25. 25.
    Platts JA, Overgaard J, Jones C, Iversen BB, Stasch A (2011) J Phys Chem A 115:194CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rajul Ranjan Choudhury
    • 1
  • R. Chitra
    • 1
  • Frédéric Capet
    • 2
  • Pascal Roussel
    • 2
  1. 1.Solid State Physics DivisionBhabha Atomic Research CenterMumbaiIndia
  2. 2.CNRS, UMR8181, UCCS, Unité de catalyse et de chimie du solide, ENSCL-USTLUniversité Lille Nord de FranceVilleneuve d’AscqFrance

Personalised recommendations