Advertisement

Journal of Chemical Crystallography

, Volume 44, Issue 8, pp 387–393 | Cite as

Ferroelectricity of Phenazine–Chloranilic Acid at \(T = 100\) K

  • Leila Noohinejad
  • Swastik Mondal
  • Alexander Wölfel
  • Sk Imran Ali
  • Andreas Schönleber
  • Sander van Smaalen
Original Paper

Abstract

The co-crystal of phenazine (Phz) and chloroanilic acid \((\hbox {H}_{2}\hbox {ca})\) is ferroelectric below the temperature \(T_{c}^I = 253\) K (FE-I phase). Upon cooling, two more phase transitions involve a further reduction of symmetry, until Phz-H\(_{2}\)ca is triclinic in the second ferroelectric phase (FE-II phase) stable below \(T_{c}^{II} =\)  137 K. Ferroelectricity in all low-temperature phases is believed to be related to partial proton transfer within the hydrogen bonds between the molecules Phz and \(\hbox {H}_{2}\hbox {ca}\). Here we present the crystal structure of the FE-II phase at \(T = 100\) K. Experimental positions of hydrogen atoms indicate that ferroelectricity is mainly governed by half of the hydrogen-bonded chains, whereby proton transfer is observed within one of the two hydrogen bonds in which each molecule participates. A simple point charge model quantitatively reproduces the polarisation of this material. However, a possible contribution to the polarisation is proposed of the O–H\(\cdots\)N hydrogen bonds of the second half of the mixed chains, which show elongated O–H bonds similar to those in the FE-I phase. The twofold superstructure with \(P1\) symmetry was successfully solved as commensurately modulated structure employing the monoclinic superspace group \(P2_{1}(1/2\,\sigma _{2}\, 1/2)0\). The latter shows that the distortions at low temperatures follow a single normal mode of the space group \(P2_{1}\) of the FE-I phase, and it thus explains that the direction of the polarisation remains close to the monoclinic axis, despite the lowering towards triclinic symmetry.

Graphical Abstract

Ferroelectricity below Tc(II) = 137 K is governed by proton transfer from O to N atoms within one quarter of the O–H⋯N hydrogen bonds, together with elongation of the O–H bonds within a second quarter of hydrogen bonds.

Keywords

Ferroelectricity Hydrogen bond X-ray diffraction 

Notes

Acknowledgments

Single crystals were grown by Alfred Suttner at the Laboratory of Crystallography in Bayreuth. We thank Carsten Paulman for assistance during the experiment at beamline F1 of Hasylab at DESY in Hamburg, Germany. The research of L. N. has been made possible through financial support by the German Academic Exchange Service (DAAD).

References

  1. 1.
    Gonzalo JA (1990) Effective field approach to phase transitions and some applications to ferroelectrics, 2nd edn. World Scientific, SingaporeGoogle Scholar
  2. 2.
    Fu DW, Cai HL, Liu Y, Ye Q, Zhang W, Zhang Y, Xue Yuan C, Gianluca G, Capone M, Li J, Xiong RG (2013) Science 339(2009):425CrossRefGoogle Scholar
  3. 3.
    Horiuchi S, Tokunaga Y, Giovannetti G, Picozzi S, Itoh H, Shimano R, Kumai R, Tokura Y (2010) Nature 463(7282):789. doi: 10.1038/nature08731 CrossRefGoogle Scholar
  4. 4.
    Horiuchi S, Ishii F, Kumai R, Okimoto Y, Tachibana H, Nagaosa N, Tokura Y (2005) Nature Mater 4(2):163. doi: 10.1038/nmat1298 CrossRefGoogle Scholar
  5. 5.
    Gotoh K, Asaji T, Ishida H (2007) Acta Crystallogr C 63(1):o17. doi: 10.1107/S0108270106049468 CrossRefGoogle Scholar
  6. 6.
    Kumai R, Horiuchi S, Sagayama H, Arima TH, Watanabe M, Noda Y, Tokura Y (2007) J Am Chem Soc 129(43):12920. doi: 10.1021/ja075406r CrossRefGoogle Scholar
  7. 7.
    Saito K, Amano M, Yamamura Y, Tojo T, Atake T (2006) J Phys Soc Jpn 75(3):033601. doi: 10.1143/JPSJ.75.033601 CrossRefGoogle Scholar
  8. 8.
    Horiuchi S, Kumai R, Tokura Y (2009) J Mater Chem 19(25):4421. doi: 10.1039/b900987f CrossRefGoogle Scholar
  9. 9.
    Amano M, Yamamura Y, Sumita M, Yasuzuka S, Kawaji H, Atake T, Saito K (2009) J Chem Phys 130(3):034503. doi: 10.1063/1.3058589 CrossRefGoogle Scholar
  10. 10.
    Lee K, Kolb B, Thonhauser T, Vanderbilt D, Langreth D (2012) Phys Rev B 86(10):104102. doi: 10.1103/PhysRevB.86.104102 CrossRefGoogle Scholar
  11. 11.
    Kumai R, Horiuchi S, Fujioka J, Tokura Y (2012) J Am Chem Soc 134(2):1036. doi: 10.1021/ja208113p CrossRefGoogle Scholar
  12. 12.
    van Smaalen S (2007) Incommensurate crystallography. Oxford University Press, OxfordCrossRefGoogle Scholar
  13. 13.
    Schönleber A (2011) Z Kristallogr 226(6):499. doi: 10.1524/zkri.2011.1372 Google Scholar
  14. 14.
    Schreurs AMM, Xian X, Kroon-Batenburg LMJ (2009) J Appl Crystallogr 43(1):70. doi: 10.1107/S0021889809043234 CrossRefGoogle Scholar
  15. 15.
    Janssen T, Janner A, Looijenga-Vos A, de Wolff PM (2006) In: Prince E (ed) International tables for crystallography, vol C. Kluwer Academic, Dordrecht, pp 907–955CrossRefGoogle Scholar
  16. 16.
    Sheldrick GM (2008) SADABS, Version 2008/1. University of Göttingen, GöttingenGoogle Scholar
  17. 17.
    Stokes HT, Campbell BJ, van Smaalen S (2011) Acta Crystallogr A 67(1):45. doi: 10.1107/S0108767310042297 CrossRefGoogle Scholar
  18. 18.
    van Smaalen S, Campbell BJ, Stokes HT (2013) Acta Crystallogr A 69:75. doi: 10.1107/S0108767312041657 CrossRefGoogle Scholar
  19. 19.
    Petricek V, Dusek M, Palatinus L (2006) Jana 2006 software. Institute of Physics, PrahaGoogle Scholar
  20. 20.
    Müller P, Herbst-Irmer R, Spek AL, Schneider TR, Sawaya MR (2005) Crystal structure refinement. A crystallographers guide to SHELXL. Oxford University Press, OxfordGoogle Scholar
  21. 21.
    Engh RA, Huber R (1991) Acta Crystallogr A 47(4):392. doi: 10.1107/S0108767391001071 CrossRefGoogle Scholar
  22. 22.
    Palatinus L (2004) Acta Crystallogr A 60(6):604. doi: 10.1107/S0108767304022433 CrossRefGoogle Scholar
  23. 23.
    Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) J Chem Soc Perkin Trans 2(12):S1. doi: 10.1039/p298700000s1 CrossRefGoogle Scholar
  24. 24.
    Perez-Mato JM, Orobengoa D, Aroyo MI (2010) Acta Crystallogr A 66:558CrossRefGoogle Scholar
  25. 25.
    Horiuchi S, Kumai R, Tokura Y (2005) J Am Chem Soc 127(14):5010. doi: 10.1021/ja042212s CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Leila Noohinejad
    • 1
  • Swastik Mondal
    • 1
  • Alexander Wölfel
    • 1
  • Sk Imran Ali
    • 1
  • Andreas Schönleber
    • 1
  • Sander van Smaalen
    • 1
  1. 1.Laboratory of CrystallographyUniversity of BayreuthBayreuthGermany

Personalised recommendations