Advertisement

Journal of Chemical Crystallography

, Volume 44, Issue 5, pp 229–235 | Cite as

Modulating Cavity Size in an Acyclic Amino Alcohol Assembly

  • Alvaro S. de SousaEmail author
  • Kamentheren Padayachy
  • Manuel A. Fernandes
  • Helder M. Marques
Original Paper

Abstract

An acyclic amino alcohol compound (1) and its protonated form (2) are investigated as solid state synthons for the design of self-assembled columnar structures. Compound 1, C16 H33 N3 O2, crystallizes in double-stranded chains comprising ill-defined, collapsed central cavities. Chains in (1) are further linked by stereospecific O–H···N interactions to form porous sheets. Well-defined central cavities are observed in the columnar structure of compound 2, C16 H36 Cl3 N3 O14. The larger cavities result from a reorientation of N–H···O and hydroxycyclohexyl O–H···O hydrogen-bonding interactions effected by protonation of nitrogen atoms.

Graphical Abstract

The nature and size of the central cavity observed for an amino alcohol compound (1), C16 H33 N3 O2, is modulated by altering the hydrogen bonding array. Heteroatom protonation and anion inclusion redirect hydrogen bonding interactions of amino alcohol moieties and their bridging trans dialkylammonium chains, that result in the formation of well-defined central cavities observed in compound (2), C16 H36 Cl3 N3 O14.

Keywords

Amino alcohol assembly Tubular and helical structures Supramolecular cavities Hydrogen bonding 

Notes

Acknowledgments

This research was supported by the University of the Witwatersrand, Johannesburg, South Africa.

References

  1. 1.
    de Sousa AS, Sannasy D, Fernandes MA, Marques HM (2012) Acta Cryst C68:o383–o386Google Scholar
  2. 2.
    de Sousa AS, Hlam Z, Fernandes MA, Marques HM (2010) Acta Cryst C66:o229–o232Google Scholar
  3. 3.
    Mootz D, Brodalla D, Wiebcke M (1989) Acta Cryst C45:754–757Google Scholar
  4. 4.
    de Sousa AS, Hlam Z, Fernandes MA, Marques HM (2010) Acta Cryst C66:o553–o556Google Scholar
  5. 5.
    de Sousa AS, Hancock RD, Riebenspies JH (1997) J Chem Soc, Dalton Trans 16:2831–2836CrossRefGoogle Scholar
  6. 6.
    Bruker (2007) APEX2.Bruker AXS Inc., MadisonGoogle Scholar
  7. 7.
    Bruker (2007) SAINT+. Bruker AXS Inc., MadisonGoogle Scholar
  8. 8.
    Bruker (1999) SHELXTL. version 5.1. (includes XS, XL, XP, XSHELL) Bruker AXS Inc., MadisonGoogle Scholar
  9. 9.
    Spek ALJ (2009) Appl Cryst D65:148Google Scholar
  10. 10.
    Farrugia LJJ (2012) Appl Cryst 45:849CrossRefGoogle Scholar
  11. 11.
    Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1637–1641Google Scholar
  12. 12.
    Desiraju GR (2005) Chem Commun 2995–3001Google Scholar
  13. 13.
    Steiner T (2002) Angew Chem Int Ed 41:48–76CrossRefGoogle Scholar
  14. 14.
    Bernstein J, Davis RE, Shinoni L, Chang NL (1995) Angew Chem Int Ed Engl 34:1555–1573CrossRefGoogle Scholar
  15. 15.
    Ishida Y, Amano S, Saigo K (2003) Chem Commun 2338–2339Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alvaro S. de Sousa
    • 1
    Email author
  • Kamentheren Padayachy
    • 1
  • Manuel A. Fernandes
    • 1
  • Helder M. Marques
    • 1
  1. 1.Molecular Sciences Institute, School of ChemistryUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations