Advertisement

Journal of Chemical Crystallography

, Volume 43, Issue 9, pp 463–470 | Cite as

Two Distinct Cu(I) Coordination Polymers Based on Isoniazid and Different Bridged Groups

  • Zhengjing JiangEmail author
  • Pusu Zhao
  • Rongqing Li
  • Litao An
  • Zaichao Zhang
  • Jian Xu
Original Paper

Abstract

Two coordination polymers of [CuSCN(INH)] n (1) and [CuCl(INH)] n (2) have been synthesized (where INH = isoniazid). Their crystal structures have been determined by X-ray single crystal diffraction and both of them belong to monoclinic system. The Cu(I) ions in 1 and 2 all adopt distorted tetrahedral geometries. The complex 1 belongs to Cc space group and the cell parameters are: a = 44.370(2) Å, b = 3.811(3) Å, c = 30.2800(19) Å, β = 132.87(3)° and Z = 4. The Cu(I) ion in 1 is coordinated to three SCN groups and one INH ligand and such coordination model result in a 2D networks construction. Complex 2 crystallizes in the P21/c space group and the cell parameters are: a = 7.0319(13) Å, b = 18.367(3) Å, c = 6.0644(11) Å, β = 93.466(2)° and Z = 4. Each copper atom in 2 is ligated by two INH ligands and two chlorine groups. Two copper atoms are asymmetrically bridged by two chlorine ligands to form a Cu2Cl2 unit. Each Cu2Cl2 fragment is bridged by four INH groups to form a 2D layer structure.

Graphical Abstract

Two 2D Cu (I) coordination polymers based on isoniazid and different bridged groups, [CuSCN(INH))] n and [CuCl(INH)] n were synthesized and characterized.

Keywords

Isoniazid Copper(I) Coordination polymer Crystal structure Thermal analysis 

Notes

Acknowledgments

This work was supported by Fund of Jiangsu Key Laboratory for Chemistry of Low-dimensional Materials (JSKC12113).

References

  1. 1.
    Eddaoudi M, Moler DB, Li HL, Chen BL, Reineke TM, O’Keeffe M, Yaghi OM (2001) Acc Chem Res 34:319CrossRefGoogle Scholar
  2. 2.
    Mrozinski J (2005) Coord Chem Rev 249:2534CrossRefGoogle Scholar
  3. 3.
    Sudik AC, Cote AP, Wong-Foy AG, O’Keeffe M, Yaghi OM (2006) Angew Chem Int Ed 45:2528CrossRefGoogle Scholar
  4. 4.
    Robin AY, Fromm KM (2006) Coord Chem Rev 250:2127CrossRefGoogle Scholar
  5. 5.
    Zhang ML, Li DS, Wang JJ, Fu F, Du M, Wu YP (2009) Dalton Trans 27:5355CrossRefGoogle Scholar
  6. 6.
    Wu MF, Zheng FK, Wu AQ, Li Y, Wang MS, Zhou WW, Chen F, Guo GC, Huang JS (2010) Cryst Eng Commun 12:260CrossRefGoogle Scholar
  7. 7.
    Xu J, Bai ZS, Okamura TA, Chen MS, Sun WY, Ueyama N (2009) Polyhedron 28:2480CrossRefGoogle Scholar
  8. 8.
    Sun DF, Collins DJ, Ke YX, Zhou HC (2006) Chem Eur J 12:3768CrossRefGoogle Scholar
  9. 9.
    Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Science 300:1127CrossRefGoogle Scholar
  10. 10.
    Wang ZQ, Kravtsov VC, Zaworotko MJ (2005) Angew Chem Int Ed Engl 44:2877CrossRefGoogle Scholar
  11. 11.
    Hu S, Zhang JP, Li HX, Tong ML, Chen XM, Kitagawa S (2007) Cryst Growth Des 7:2286CrossRefGoogle Scholar
  12. 12.
    Fu F, Li DS, Gao XM, Du M, Wu YP, Zhang XN, Meng CX (2010) Cryst Eng Commun 12:1227CrossRefGoogle Scholar
  13. 13.
    Rao CNR, Natarajan S, Vaidhyanathan R (2004) Angew Chem Int Ed Engl 43:1466CrossRefGoogle Scholar
  14. 14.
    Su Z, Xu J, Fan J, Liu DJ, Chu Q, Chen MS, Chen SS, Liu GX, Wang XF, Sun WY (2009) Cryst Growth Des 9:2801CrossRefGoogle Scholar
  15. 15.
    Li H, Eddaoudi M, O’keeffe M, Yaghi OM (1999) Nature 402:276CrossRefGoogle Scholar
  16. 16.
    Rather B, Moulton B, Walsh RDB, Zaworotko MJ (2002) Chem Commun 6:694CrossRefGoogle Scholar
  17. 17.
    Lin ZJ, Slawin AMZ, Morris RE (2007) J Am Chem Soc 129:4880CrossRefGoogle Scholar
  18. 18.
    Safavi A, Karimi MA, Nezhad MRH (2003) J Pharm Biomed Anal 30:1499CrossRefGoogle Scholar
  19. 19.
    Song ZH, Lü JH, Zhao TZ (2001) Talanta 53:1171CrossRefGoogle Scholar
  20. 20.
    Freitas MCR, António JMS, Ziolli RL, Yoshida MI, Rey NA, Diniz R (2011) Polyhedron 30:1922CrossRefGoogle Scholar
  21. 21.
    Hanson JC, Camerman N, Camerman A (1981) J Med Chem 24:1369CrossRefGoogle Scholar
  22. 22.
    Miller KM, McCullough SM, Lepekhina EA, Thibau IJ, Pike RD (2011) Inorg Chem 50:7239CrossRefGoogle Scholar
  23. 23.
    Peng R, Li M, Li D (2010) Coord Chem Rev 254:1CrossRefGoogle Scholar
  24. 24.
    Jiang ZJ, Tang GD, Zhang Y, Zhang ZC, Lu LD (2010) Chinese J Inorg Chem 26:323Google Scholar
  25. 25.
    Jiang ZJ, Lu LD, Wu XD, Yang XJ (2009) Chinese J Inorg Chem 25:746Google Scholar
  26. 26.
    Bruker (2000) SMART and SAINT.Bruker AXS Inc, MadisonGoogle Scholar
  27. 27.
    Sheldrick GM (2000) SADABS. University of Göttingen, GermanyGoogle Scholar
  28. 28.
    Sheldrick GM (1997) SHELXS97 and SHELXL97. University of Göttingen, GermanyGoogle Scholar
  29. 29.
    Sheldrick GM (2010) Acta Cryst A64:112Google Scholar
  30. 30.
    Goher MAS, Mautner FA (1999) Polyhedron 18:1805CrossRefGoogle Scholar
  31. 31.
    Morshedi M, Amirnasr M, Triki S, Khalaji AD (2011) J Chem Crystallogr 41:39CrossRefGoogle Scholar
  32. 32.
    Näther C, Greve J, Jeba I, Wickleder C (2003) Solid State Sci 5:1167CrossRefGoogle Scholar
  33. 33.
    Dehno Khalaji A, Weil M, Hadadzadeh H, Daryanavard M (2009) Inorg Chim Acta 362:4837CrossRefGoogle Scholar
  34. 34.
    Teichert O, Sheldrick WS (1999) Z Anorg Allg Chem 625:1860CrossRefGoogle Scholar
  35. 35.
    Henary M, Wootton JL, Khan SI, Zink JI (1997) Inorg Chem 36:796CrossRefGoogle Scholar
  36. 36.
    Robin AY, Fromm KM, Goesmann H, Bernardinelli G (2003) Cryst Eng Commun 5(71):405CrossRefGoogle Scholar
  37. 37.
    Yaghi OM, Li G (1995) Angew Chem Int Ed Engl 34(2):207CrossRefGoogle Scholar
  38. 38.
    Lu J, Crisci G, Niu T, Jacobson AJ (1997) Inorg Chem 36:5140CrossRefGoogle Scholar
  39. 39.
    Jalbout AF, Li XH, Hassan MR, Golzar Hossain GM (2008) Transition Met Chem 33:597CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Zhengjing Jiang
    • 1
    • 2
    Email author
  • Pusu Zhao
    • 1
    • 2
  • Rongqing Li
    • 1
    • 2
  • Litao An
    • 1
    • 2
  • Zaichao Zhang
    • 1
    • 2
  • Jian Xu
    • 1
    • 2
  1. 1.Jiangsu Key Laboratory for the Chemistry of Low-Dimensional MaterialsHuaiyin Normal UniversityHuai’anPeople’s Republic of China
  2. 2.Jiangsu Key Laboratory for Biomassbased Energy and Enzyme TechnologyHuaiyin Normal UniversityHuai’anPeople’s Republic of China

Personalised recommendations