Advertisement

Journal of Chemical Crystallography

, Volume 43, Issue 3, pp 138–143 | Cite as

Crystal Polymorphism of Methyl 2,3,4-tri-O-acetyl-1-O-(trichloroacetimidoyl)-α-d-glucopyranouronate

  • John A. Hayes
  • Kevin S. Eccles
  • Curtis J. Elcoate
  • Carla A. Daly
  • Simon E. Lawrence
  • Humphrey A. MoynihanEmail author
Original Paper

Abstract

The polymorphism of the glycoside donor methyl 2,3,4-tri-O-acetyl-1-O-(trichloroacetimidoyl)-α-d-glucopyranouronate (1) has been investigated. Two polymorphic forms (labelled Forms I and II) have been elucidated and fully characterised by DSC, PXRD and single crystal analysis, both crystallizing in the space group P21. Form I was obtained by crystallization from a wide range of solvents, while Form II was obtained only from ethyl acetate or isopropanol on certain occasions. Unit cell dimensions for Form I are a 14.0292(12), b 8.9641(8), c 16.8580(14) Å, β 94.285(2)°, and for Form II a 11.266(3), b 6.8889(17), c 13.921(4) Å, β 101.161(6)°. Z’ is 2 for Form I and 1 for Form II. Form I displays two moderate intermolecular hydrogen bonds in the unit cell whereas Form II shows no moderate hydrogen-bonding motifs. All three molecules in the two polymorphs differ significantly in their conformations, especially with respect to the methyl carboxylate and trichloroacetimidoyl groups.

Graphical Abstract

Structures of two polymorphs of methyl 2,3,4-tri-O-acetyl-1-O-(trichloroacetimidoyl)-α-d-glucopyranouronate were determined.

Keywords

Methyl 2,3,4-tri-O-acetyl-1-O-(trichloroacetimidoyl)-α-d-glucopyranouronate Polymorphism Imine hydrogen bonding 

Notes

Acknowledgments

This publication has emanated from research conducted with the financial support of Science Foundation Ireland under Grant Numbers 07/SRC/B1158, 08/RFP/MTR1664 and 05/PICA/B802/EC07.

References

  1. 1.
    Bernstein J (2002) Polymorphism in Molecular Crystals. Oxford Science Publications, OxfordGoogle Scholar
  2. 2.
    Braga D, Grepioni F, Maini L (2010) Chem Commun 46:6232CrossRefGoogle Scholar
  3. 3.
    Bernstein J, Hagler AT (1978) J Am Chem Soc 100:673CrossRefGoogle Scholar
  4. 4.
    Mukuta T, Lee AY, Kawakami T, Myerson AS (2005) Cryst Growth Des 5:1429CrossRefGoogle Scholar
  5. 5.
    Schmidt RR (1986) Angew Chem Int Ed Engl 25:212CrossRefGoogle Scholar
  6. 6.
    Fischer B, Nudelman A, Ruse M, Herzig J, Gottlieb HE (1984) J Org Chem 49:4988CrossRefGoogle Scholar
  7. 7.
    Stachulski AV, Jenkins G (1998) Nat Prod Rep 15:173CrossRefGoogle Scholar
  8. 8.
    Brown RT, Carter NE, Mayalarp SP, Scheinmann F (2000) Tetrahedron 56:7591CrossRefGoogle Scholar
  9. 9.
    Kuszmann J, Medgyes G, Boros S (2004) Carbohydr Res 339:1569CrossRefGoogle Scholar
  10. 10.
    Hayes JA, Eccles KS, Lawrence SE, Moynihan HA (2012) Carbohydr Res 349:108CrossRefGoogle Scholar
  11. 11.
    Bruker AXS (2009) APEX2 v2009.3–0. Madison, WIGoogle Scholar
  12. 12.
    Sheldrick GM (2008) Acta Crystallogr A 64:112CrossRefGoogle Scholar
  13. 13.
    Macrae CF, Bruno IJ, Chrisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) J Appl Crystallogr 41:466CrossRefGoogle Scholar
  14. 14.
    Spek AL (2009) Acta Cryst D65:148Google Scholar
  15. 15.
    Cremer D, Pople JA (1975) J Am Chem Soc 97:1354CrossRefGoogle Scholar
  16. 16.
    Flack HD (1983) Acta Crystallogr A39:876Google Scholar
  17. 17.
    Cai C, Wei G, Du Y (2010) Acta Cryst E66:o949Google Scholar
  18. 18.
    Baddeley TC, Howie RA, Skakle JMS, Wardell JL (2005) Acta Cryst C61:o711Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • John A. Hayes
    • 1
  • Kevin S. Eccles
    • 1
  • Curtis J. Elcoate
    • 1
  • Carla A. Daly
    • 1
  • Simon E. Lawrence
    • 1
  • Humphrey A. Moynihan
    • 1
    Email author
  1. 1.Analytical and Biological Chemistry Research Facility, Department of ChemistryUniversity College CorkCorkIreland

Personalised recommendations