Journal of Chemical Crystallography

, Volume 41, Issue 12, pp 1901–1926 | Cite as

Structure–Bioactivity-Relationships and Crystallographic Analysis of Secondary Interactions in Pregnane-Based Steroids

Review Paper

Abstract

A total of eighty-seven molecules of pregnane-based steroids (1–87) have been included to predict their pharmacological effects, specific mechanisms of action, known toxicities, drug likeness, etc., by using the statistics of multilevel neighbourhoods of atoms descriptors for active and inactive fragments. The probable activities are characterized by Pa and Pi values which depict that most of the molecules have high value of teratogen activity. The biological activity spectra for substances have been correlated on SAR base (structure–activity relationships data and knowledge base) which provides the different Pa (probability of activity) and Pi (probability of inactivity). The Lipinski’s rule predicts that most of pregnane derivatives have stronger preponderance for “cancer-like-drug” molecules and some of their related analogous have been entered in the American National Cancer Institute database. The CCDC survey sets out to collate existing data on pregnane derivatives and its interpretations with special emphasis on intra- and intermolecular hydrogen bonds. X–H···A intra/intermolecular hydrogen bonds in the identified molecules have been described with the standard distance and angle cut-off criteria. D–θ and d–θ scatter plots for X–H···A intra- and intermolecular interactions are presented for better understanding of packing interactions existing among these derivatives. Comparison of contacts from H(C) to O and H(O) to O, vis-à-vis their crystal structure reveals that contacts from H(O) to O predominate over H(C) to O. The hydrogen interactions between crystallographic independent molecules represent a rich hunting ground for understanding packing in the solids. Bifurcated hydrogen bonds have been identified in some molecules and most of these bonds are based on C–H···O pattern in which ‘O’ atom acts as a prototype acceptor. Solvent–solute/solute–solvent interactions have also been investigated to understand more complicated processes that occur for biomolecules in aqueous solutions. Most of the molecules show high value of drug-likeness; whereas molecule-5(87.5%), 25 (87.4%), 34 (88.6%), 45 (89.9%), 58 (81.4%), 67 (87.2%) and 83 (89.9%) exhibit low value of drug-likeness, instead of observed range of 91.2–99.4%.

Graphical Abstract

Biochemical processes are transformations that occur in living organisms involve a great variety of steroids, proteins, lipids, carbohydrates, etc. and these complex substances make up some portion of the total weight of biochemical systems in which main constituent is water. Steroidal molecules are held in their defined 3-D structures by hydrogen bonds. The solvent–solute/solute–solvent interactions [O5(Methanol)–H(Methanol)···O3; O17–(HO17)···O5(Methanol)] for a pregnane derivative are plotted in Figure. These interactions greatly influence the behaviour of compounds. In biological–activity the ubiquitous presence of solvent affects many macroscopic results, such as excretion. The possibility of modeling such interactions can reduce experiments and permit better understanding of compound activity.

Keywords

Pregnane X-ray diffraction Biological activity Structure–activity-relationships Intra- and intermolecular hydrogen bonds Bifurcated hydrogen bonds Solvent–solute interactions Lipinski’s rule 

References

  1. 1.
    Briggs MJ, Brothern J (1970) Steroid biochemistry and pharmacology. Academic Press, London, New York, p 89Google Scholar
  2. 2.
    Makin HLJ (1975) Biochemistry of steroid hormones. Blackwell Scientific Publications, Oxford, p 47Google Scholar
  3. 3.
    Makin HLJ (1975) Biochemistry of steroid hormones. Blackwell Scientific Publications, Oxford, p 48Google Scholar
  4. 4.
    Filimonov DA, Poroikov VV, Borodina Yu, Gloriozova T (1999) J Chem Inf Comput Sci 39:666CrossRefGoogle Scholar
  5. 5.
    Poroikov VV, Filimonov DA (2001) Computer-assisted predictions of biological activity in search for and optimization of new drugs. Iridium Press, Moscow, p 149Google Scholar
  6. 6.
    Poroikov VV, Akimov DA, Shabelnikova E, Filimonov DA (2001) SAR and QSAR in Environ Res 12(4):327CrossRefGoogle Scholar
  7. 7.
    Anzali S, Barnickel G, Cezanne B, Krug M (2001) J Med Chem 44:2432CrossRefGoogle Scholar
  8. 8.
    Ohrt JM, Haner B, Cooper A, Norton DA (1968) Acta Crystallogr B24:312Google Scholar
  9. 9.
    Declercq JP, Germain G, Meerssche MV (1972) Cryst Struct Commn 1:9Google Scholar
  10. 10.
    Declercq JP, Germain G, Meerssche MV (1972) Cryst Struct Commn 1:13Google Scholar
  11. 11.
    Declercq JP, Germain G, Meerssche MV (1972) Cryst Struct Commn 1:59Google Scholar
  12. 12.
    Nassimbeni LR, Sheldrick GM, Kennard O (1974) Acta Crystalogr B30:2401Google Scholar
  13. 13.
    Terzis A, Theophanides T (1975) Acta Crystallogr B31:790Google Scholar
  14. 14.
    Terzis A, Theophanides T (1975) Acta Crystallogr B31:796Google Scholar
  15. 15.
    Karle IL (1975) Acta Crystallogr B31:1519Google Scholar
  16. 16.
    De Angles NJ, Doyne TH, Grob RL (1975) Acta Crystallogr B31:2040Google Scholar
  17. 17.
    Courseille PC, Busseta B, Precigoux G, Hospital M (1975) Acta Crystallogr B31:2290Google Scholar
  18. 18.
    Delettre PJ, Mornon JP, Lepicard G (1975) Acta Crystallogr B31:2858Google Scholar
  19. 19.
    Weeks CM, Duax WL, Wolff ME (1976) Acta Crystallogr B32:261Google Scholar
  20. 20.
    Weeks CM, Duax WL (1976) Acta Crystallogr B32:2819Google Scholar
  21. 21.
    Delettre PJ, Mornon JP, Bally PR (1977) Acta Crystallogr B33:610Google Scholar
  22. 22.
    Bally PR, Lepicard G, Surcouf E (1977) Acta Crystallogr B33:613Google Scholar
  23. 23.
    Lepicard G, Delettre J, Mornon JP (1977) Acta Crystallogr B33:615Google Scholar
  24. 24.
    Mornon JP, Lepicard G, Bally PR (1977) Acta Crystallogr B33:1166Google Scholar
  25. 25.
    Albertsson J, Oskarsson A, Stevenson C (1978) Acta Crystallogr B34:3027Google Scholar
  26. 26.
    Roher DC, Duax WL, Zellen FJ (1978) Acta Crystallogr B34:3801Google Scholar
  27. 27.
    Roher DC, Duax WL, Peters R, Tanabe M (1982) Acta Crystallogr B38:1362Google Scholar
  28. 28.
    Van Geerestein VJ, Kanters JA, Duisenberg AJM (1983) Acta Crystallogr C39:1459Google Scholar
  29. 29.
    Ahmed FR, Huber CP (1986) Acta Crystallogr C42:1596Google Scholar
  30. 30.
    Hossain MB, Vander Helm A, Wasylyk JM, Alam M (1987) Acta Crystallogr C43:2424Google Scholar
  31. 31.
    Geerestein VJ, Hendrinks R (1988) Acta Crystallogr C44:379Google Scholar
  32. 32.
    Krystanovic I, Cvetkovic N, Oberti R, Karanovic L (1989) Acta Crystallogr C45:478Google Scholar
  33. 33.
    Duax WL, Griffin JF, Strong PD, Guan Y (1989) Acta Crystallogr C45:1433Google Scholar
  34. 34.
    Agafonov V, Legendre B, Rodier N (1989) Acta Crystallogr C45:1661Google Scholar
  35. 35.
    Duax WL, Griffin JF, Strong PD, Guan Y, Solo AJ, Semler JR (1989) Acta Crystallogr C45:2014Google Scholar
  36. 36.
    Galdecki Z, Grochulski P, Wawrzak Z, Duax WL, Strong PD (1990) Acta Crystallogr C46:941Google Scholar
  37. 37.
    Galdecki Z, Grochulski P, Wawrzak Z, Duax WL, Strong PD (1990) Acta Crystallogr C46:1498Google Scholar
  38. 38.
    Wawrzak Z, Grochulski P, Galdecki Z, Duax WL, Strong PD, Kirk DN (1991) Acta Crystallogr C47:385Google Scholar
  39. 39.
    Czerwinski EW (1991) Acta Crystallogr C47:2598Google Scholar
  40. 40.
    Stankovic S, Lazar D, Miljkovic D, Gasi K, Sakac M, Courseille C (1992) Acta Crystallogr C48:498Google Scholar
  41. 41.
    Dastidar P, Joseph T, Madyastha KM, Guru Row TN (1993) Acta Crystallogr C49:273Google Scholar
  42. 42.
    Palmer RA, Palmer HT, Lisgarten JN, Lancaster R (1993) Acta Crystallogr C49:721Google Scholar
  43. 43.
    Gupta VK, Rajnikant, Goswami KN (1994) Acta Crystallogr C50:798Google Scholar
  44. 44.
    Gupta VK, Rajnikant, Goswami KN, Bhutani KK (1994) Cryst Res Technol 29(1):77CrossRefGoogle Scholar
  45. 45.
    Singh A, Gupta VK, Rajnikant, Goswami KN (1994) Cryst Res Technol 29:837CrossRefGoogle Scholar
  46. 46.
    Singh A, Gupta VK, Rajnikant, Goswami KN, Bhutani KK (1994) Mol Mat 4:295Google Scholar
  47. 47.
    Lisgarten DR, Palmer RA, Dominique M, Lisgarten J, Lode W (1995) Acta Crystallogr C51:666Google Scholar
  48. 48.
    Luger P, Manuela W, Xuan DN, Pham TK, Chinh LT (1996) Acta Crystallogr C52:1574Google Scholar
  49. 49.
    Pniewska B, Romana A, Teresa UH (1996) Acta Crystallogr C52:2288Google Scholar
  50. 50.
    Singh A, Gupta VK, Rajnikant, Goswami KN, Gupta BD, Banerjee SK (1996) Mol Mat 6:53Google Scholar
  51. 51.
    Garacia MS, Ortega SH, Bratoeff E, Flores G, Ramirez E (1998) Acta Crystallogr C54:2022Google Scholar
  52. 52.
    Garacia MS, Ortega SH, Bratoeff E, Valenca N, Ramirez E, Flores G (1998) J Chem Crystallogr 28(6):487CrossRefGoogle Scholar
  53. 53.
    Vencato I, Niero R, Montanari JL, Calixto JB, Sant Ana AEG, Yunes RA (1999) Acta Crystallogr C55:827Google Scholar
  54. 54.
    Andrade LCR, Paixao MJM, Martins RMLM, Soares HIM, Moreno MJSM, Melo MS, Campos Neves AS (2001) Acta Crystallogr C57:587Google Scholar
  55. 55.
    Andrade LCR, Paixao JA, De Almedia MJM, Martins RMLM, Soares HIM, Moreno MJSM, Melo MS, Campos Neves AS (2001) Acta Crystallogr E57:o571Google Scholar
  56. 56.
    Thompson HW, Lalancette RA (2002) Acta Crystallogr C58:o22Google Scholar
  57. 57.
    Fernandez D, Vega D, Ellena JA (2003) Acta Crystallogr C59:o187Google Scholar
  58. 58.
    Andrade LCR, Paixao JA, De Almedia MJM, Martins RMLM, Soares HIM, Moreno MJSM, Melo MS, Campos Neves AS (2003) Acta Crystallogr E59:o299Google Scholar
  59. 59.
    Gadepalli RSVS, Rimoldi JM, Fronczek FR (2003) Acta Crystallogr E59:o1525Google Scholar
  60. 60.
    Choudhary MI, Dev Kota KP, Anjum S, Rehman AA, Fun HK, Attar-ur-Rehman (2003) Acta Crystallogr E59:1682Google Scholar
  61. 61.
    Rajnikant Dinesh, Anshu Mousmi (2004) Cryst Res Technol 39(4):353CrossRefGoogle Scholar
  62. 62.
    Wang SL, Zheng Y, Zhang WQ (2004) Acta Crystallogr E60:o1063Google Scholar
  63. 63.
    Wang Y, Wang S, Hao H, Chen W, Nie Q (2004) Acta Crystallogr E60:1338Google Scholar
  64. 64.
    Tang GP, Hi XR, Gu JM (2004) Acta Crystallogr E60:o1622Google Scholar
  65. 65.
    Wang S, Wang Y, Nie Q, Zhou L, Wu L (2004) Acta Crystallogr E 60:o2337CrossRefGoogle Scholar
  66. 66.
    Dey R, Langer V, Roychowdhury P, Roychowdhury S, Drew MGB (2005) Acta Crystallogr C61:o201Google Scholar
  67. 67.
    Kumar R, Sagar R, Shaw AK, Maulik PR (2005) Acta Crystallogr E61:o3905Google Scholar
  68. 68.
    Wang S, Nie Q, Xiang A, Zhou L (2005) Acta Crystallogr E61:o563Google Scholar
  69. 69.
    Wang S, Wang Y, Nie Q, Xiang A, Zhou L (2005) Acta Crystallogr E61:o1Google Scholar
  70. 70.
    Nie Q, Wang J, Wang S, Zhang M (2005) Acta Crystallogr E61:o398Google Scholar
  71. 71.
    Nie Q, Wang JK, Zhang MJ (2005) Acta Crystallogr E61:o912Google Scholar
  72. 72.
    Dey R, Chanda S, Pal S, Roy Chowdhury S (2005) Acta Crystallogr E61:o980Google Scholar
  73. 73.
    Haitao Z, Nie Q, Chen Y, Wang J, Zhou L (2006) Acta Crystallogr E62:o4075Google Scholar
  74. 74.
    Zhang GL, Peng HY, Sun J (2006) Acta Crystallogr E62:o5112Google Scholar
  75. 75.
    Quander S, Boyd SE, Houstan TA, Jenkis JD, Herly PC (2006) Acta Crystallogr E62:o162Google Scholar
  76. 76.
    Wu XH, Wang YL, Zhou LN (2006) Acta Crystallogr E 62:o3299CrossRefGoogle Scholar
  77. 77.
    Jiang HY, Wang WL, Zhou L (2006) Acta Crystallogr E62:o4446Google Scholar
  78. 78.
    Liu HF, Huang LN, Ju M (2006) Acta Crystallogr E62:o4517Google Scholar
  79. 79.
    Bandhoria P, Gupta VK, Gupta DK, Jain SM, Varghese B (2006) J Chem Crystallogr 36(3):61CrossRefGoogle Scholar
  80. 80.
    Bandhoria P, Gupta VK, Gupta BD, Varghese B (2006) J Chem Crystallogr 36(7):427CrossRefGoogle Scholar
  81. 81.
    Sheng LQ, Pan HM, Chen CT, Chen G (2007) Acta Crystallogr E63:o325Google Scholar
  82. 82.
    Wang NQ, Wang TJ (2007) Acta Crystallogr E63:o3659Google Scholar
  83. 83.
    Zhou W, Hu WX, Xia CN (2007) Acta Crystallogr E63:o4584Google Scholar
  84. 84.
    Pinto RMA, Salvador JAR, Paixao JA, Beja AM, Silva MR (2008) Acta Crystallogr E64:o1420Google Scholar
  85. 85.
    Shukla YJ, Fronczek FR, Pawar RS, Khan IA (2008) Acta Crystallogr E64:o1643Google Scholar
  86. 86.
    Shi H, Li Y (2009) Acta Crystallogr E65:o1102Google Scholar
  87. 87.
    Ketuly KA, Hadi AHA, Ng SW (2009) Acta Crystallogr E65:o2220Google Scholar
  88. 88.
    Hernandez Linares MG, Ramirez JS, Reyes SM, Smith SM, Bernes S (2009) Acta Crystallogr E65:o3265Google Scholar
  89. 89.
    Wang H, Xiao J, Chen P, Sum TM (2010) Acta Crystallogr E66:o1331Google Scholar
  90. 90.
    Tabot MB, Schinakenburg G, Gross H (2010) Acta Crystallogr E66:o2040Google Scholar
  91. 91.
    Gupta VK, Bandhoria P, Gupta BD (2011) J Chem Crystallogr 41(4):582Google Scholar
  92. 92.
    Poroikov VV, Filimonov DA, Ihlenfeldt WD, Gloriozova TA, Lagunin AA, Borodina YV, Stepanchikova AV, Nicklaus MC (2003) J Chem Inf Comput Sci 43:228CrossRefGoogle Scholar
  93. 93.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Adv Drug Delivery Rev 23:3CrossRefGoogle Scholar
  94. 94.
    Lipinski CA (2000) J Pharmacol Toxicol Meth 44(1):235CrossRefGoogle Scholar
  95. 95.
    Dennis M (1990) Absorption processes in comprehensive medicinal chemistry. Pregamon, Oxford (UK) 5:1Google Scholar
  96. 96.
    Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press Inc, New York, p 5Google Scholar
  97. 97.
    Palenik GJ (1965) Acta Crystallogr 19:47CrossRefGoogle Scholar
  98. 98.
    Sudralingam M (1966) Acta Crystallogr B21:495CrossRefGoogle Scholar
  99. 99.
    Pletcher J, Sax M (1972) J Amer Chem Soc 94:3998CrossRefGoogle Scholar
  100. 100.
    Taylor R, Kennard O (1982) J Amer Chem Soc 104:5063CrossRefGoogle Scholar
  101. 101.
    Steiner T, Saenger W (1992) Acta Crystallogr B48:819Google Scholar
  102. 102.
    Steiner T, Saenger W (1992) J Amer Chem Soc 114:10146CrossRefGoogle Scholar
  103. 103.
    Steiner T (1996) Cryst Rev 6:7CrossRefGoogle Scholar
  104. 104.
    Jefferey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York, p 400Google Scholar
  105. 105.
    Steiner T (1998) Acta Cryst B54:456Google Scholar
  106. 106.
    Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press Inc, New York, p 66Google Scholar
  107. 107.
    Steiner T (2002) Angew Chem, Int Ed Eng 41:48CrossRefGoogle Scholar
  108. 108.
    Desiraju GR (1991) Acc Chem Res 24:270CrossRefGoogle Scholar
  109. 109.
    Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press Inc, New York, p 13Google Scholar
  110. 110.
    Preibner R, Egner U, Saenger W (1991) FEBS Lett 288:192CrossRefGoogle Scholar
  111. 111.
    Jeffery GA, Saenger W (1991) Hydrogen Bonding in Biological Structures. Springer-Verlag, Berlin, p 4Google Scholar
  112. 112.
    Kollman P (1993) Chem Rev 93:2395CrossRefGoogle Scholar
  113. 113.
    Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161CrossRefGoogle Scholar
  114. 114.
    Baldridge KK, Jonas V, Bain AD (2000) J Chem Phys 113(17):7519CrossRefGoogle Scholar
  115. 115.
    Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, New YorkGoogle Scholar
  116. 116.
    Coutinho K, Canuto S, Zerner MC (2000) J Chem Phys 112:9874CrossRefGoogle Scholar
  117. 117.
    Canuto S, Coutinho K, Trzesniak D (2002) Adv Quantum Chem 41:161CrossRefGoogle Scholar
  118. 118.
    Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press Inc, New York, p 116Google Scholar
  119. 119.
    Jedlovszky P, Turi L (1997) J Phys Chem B101:5429Google Scholar
  120. 120.
    Tezuka T, Nakagawa M, Yokoi K, Nagawa Y, Yamagaki YT, Nakanishi H (1997) Tetrahedron Lett 38(24):4223CrossRefGoogle Scholar
  121. 121.
    Davidson MG, Lamb S (1997) Polyhedron 16:4393CrossRefGoogle Scholar
  122. 122.
    Williams SP, Sigler PB (1998) Nature (London) 393:392CrossRefGoogle Scholar
  123. 123.
    Klebe G, Meitzner T, Weber F (1999) J Comput Aided Mol Design 13:35CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsPost-Graduate College (Boys)UdhampurIndia

Personalised recommendations