The Coordination Behaviour of the Peroxodisulfate Anion with Group XII Metal Ions: [Zn(H2O)(C12H8N2)2(S2O8)]·H2O and Related Compounds

  • Miguel A. Harvey
  • María E. Díaz de Vivar
  • Ricardo Baggio
  • Sergio Baggio
Original Paper

Abstract

The title compound is monomeric with a Zn(II) hexacoordinated center. The coordination sphere is formed by four nitrogens from two phenanthroline molecules, one oxygen from a monodentate peroxodisulfate ion, and one oxygen from a water molecule. A non-coordinated water molecule completes the formula with an important role in the stabilization of the structure through the formation of two OHW–H···Opds bridges (acting as a donor) and one OCW–H···OHW bridge where it is an acceptor group (HW: hydration water; pds: peroxodisulfato; CW: coordinated water). The compound is triclinic, space group P-1 with a = 8.763 (3) Å, b = 9.068 (3) Å, c = 17.531 (6) Å, α = 96.48 (2)°, β = 103.94 (3)°, γ = 104.57 (3)°, V = 1286.0 (7) Å3 and Z = 2. The structure was solved by direct methods with a conventional R (on F) = 0.050 for 4534 reflections with Fo > 4σ(Fo). The compound is isomorphous with the Cd analogue (in Harvey et al. Aust J Chem 54:307, 2001). An eventual dependence of conformation and coordination mode of the peroxodisulfate anion on the ancillary organic ligand taking part in the coordination compounds analyzed is discussed.

Graphical Abstract

The crystal structure of [Zn(H2O)(C12H8N2)2(S2O8)]·H2O is reported. In addition, similarities in conformation and coordination mode of the peroxodisulfato anion in hybrid (organic–inorganic) complexes of group XII metal ions containing similar organic ligands are discussed.

Keywords

Crystal structure Zinc (ii) coordination compounds Peroxodisulfato conformation and coordination modes 

References

  1. 1.
    Harvey MA, Baggio S, Garland MT, Burton G, Baggio R (2001) Aust J Chem 54:307CrossRefGoogle Scholar
  2. 2.
    Harvey MA, Baggio S, Garland MT, Baggio R (2001) Austr J Chem 54:711CrossRefGoogle Scholar
  3. 3.
    Harvey MA, Baggio S, Ibánez A, Baggio R (2004) Acta Cryst C 60:m375CrossRefGoogle Scholar
  4. 4.
    Díaz de Vivar ME, Harvey MA, Garland MT, Baggio S, Baggio R (2005) Acta Cryst C 61:m240CrossRefGoogle Scholar
  5. 5.
    Harvey MA, Baggio S, Garland MT, Baggio R (2008) Acta Cryst C 64:o489CrossRefGoogle Scholar
  6. 6.
    Allen FH (2002) Acta Cryst B 58:380CrossRefGoogle Scholar
  7. 7.
    Sheldrick GM (2008) Acta Cryst A 64:112CrossRefGoogle Scholar
  8. 8.
    Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M (2006) J Appl Cryst 39:453CrossRefGoogle Scholar
  9. 9.
    Brown ID (1994) Bond-length–bond-valence relationships in inorganic solids. In: Bürgi H-B, Dunitz JD (eds) Structure correlation, vol 2. VCH, Weinheim, pp 405–429CrossRefGoogle Scholar
  10. 10.
    Harvey MA, Baggio S, Baggio R (2006) Acta Cryst B 62:1038CrossRefGoogle Scholar
  11. 11.
    Yu Naumov D, Virovets AV, Podberezskaya NV, Novikov PB, Politov AA (1997) Zh Strukt Khim 38:922Google Scholar
  12. 12.
    Sivertsen BK, Sorum H (1969) Z Kristallogr Kristallgeom Kristallphys Kristallchem 130:449Google Scholar
  13. 13.
    Janiak C (2000) J Chem Soc Dalton Trans. 3885Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Miguel A. Harvey
    • 1
  • María E. Díaz de Vivar
    • 1
  • Ricardo Baggio
    • 2
  • Sergio Baggio
    • 1
  1. 1.Universidad Nacional de la Patagonia S.J.B. and Centro Nacional Patagónico, CONICET.Puerto MadrynArgentina
  2. 2.Gerencia de Investigación y AplicacionesCentro Atómico ConstituyentesBuenos AiresArgentina

Personalised recommendations